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I INTRODUCTION

This report covers the research carried out by SRI on contract
NASI-13792 (SRI project 4026) during the period 5 February 1975 to
5 February 1976. The primary goal of the research is to design a fly-
able STIFT computer that can demonstrate the feasibility of an integrated

function, fault-tolerant computer in commercial aviation,

Prior research by SRI on contract NASI-10920 (SRI project 1406)
[Refs. 1,2]“ over the period October 1972 to October 1973 considered the
design of fault~tolerant computer architectures and, in particular:

e The computational and reliability requirements of an

advanced transonic commercial transport aircraft using

fly-by-wire techniques with a unified digital computing
system,

e The impact of modern digital circuit technology on the
design of such a computer.

e Candidate architectures for a computer to satisfy the

requirements.

One of the architectural concepts conceived in that study was given
the name "SIFT" (Software-Implemented Fault-Tolerance). It showed great
promise of satisfying the extreme reliability requirements of this appli-
cation class. The detailed design of a computer based on the SIFT con-

cept 1s the primary objective of the study reported here.
The goals of the effort were:

(1) To develop the SIFT design concept to a point at
which its potential reliability may be evaluated
with reasonable accuracy.

(2) To investigate alternate strategies for physical

implementation, using available or specially designed
components,

*
Numbered references are listed at the end of the chapter.



(3) To prove the correctness of the hardware and software
designs.

(4) To model the system and evaluate its effectiveness
from a fault-tolerance point of view .
To achieve these goals, the research was directed at the critical

aspects of the design, leaving less critical aspects to a later phase

in the research program.

Some of the research results reported here have been previously
discussed in the monthly technical progress reports and in a series of
seven technical memos that have been issued during the course of this

study. 1In addition, a Technical Plan for the Future Development of SIFT

was issued in November 1975.
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II SIGNIFICANT RESULTS AND OUTSTANDING PROBLEMS

In this section we summarize the significant research results

achieved in this study, and we identify significant problems that remain..

A, Significant Research Results

The principal objective of the study was to carry out a refinement
of the SIFT concept, thereby reducing uncertainties in the design. The
intent was to prove the feasibility of a design based on the SIFT con-
cept with an eventual goal of a flyable prototype (or "brassboard"). A
significant result of our current study is that in this process of re-
fining the design, no radical changes have had to be made. Indeed the
fundamental SIFT concepts that distinguish it from other fault-tolerant
computer architectures remain, namely:

¢ All fault-tolerance procedures (error detection, error

correction, diagnosis, and reconfiguration) carried out
by software.

e No essential special fault-tolerance--different replica-
tion possible for different tasks, or at different times
for the same task,

e Very high reliability achieved without the need for high
intrinsic reliability of subunits of the system.

e Reconfiguration on the basis of complete processor/memory
modules or complete busses.

e An ability to use fairly standard units such as processors
and memories, with an attendant gain in reliability by
taking advantage of the stability of production processes
with standard high-volume production,

The development of these concepts leads to a design with the follow-

ing characteristics:

o Replicated units do not operate in lock-step mode but are
only loosely synchronized. The communication between CPUs
is asynchronous, thereby removing the need for an ultra-
reliable system clock.



Agreement between replicated units is verified only at
the completion of program segments (tasks).

Faulty units are not necessarily removed but can be either
ignored or assigned to tasks having no overall effect.

Transient faults do not necessarily cause permanent removal
of the faulty units. Furthermore, the looseness of syn-
chronization among sets of tasks makes it possible to
enhance immunity from transients by providing that redun-
dant versions of a computation may be done at different
moments in time.

The degree of fault-tolerance can be different for different
tasks being performed and can be different at different times
for the same task.

No special hardware is used to carry out fault detection
or correction.

Communication between CPUs is minimized so that low band-
width busses can be used, thereby facilitating physical
separation of modules in environments where physical
damage is a hazard.

The design concept is independent of the way in which

the units are built; i.e., no specialization of CPU or
memory design is required for fault tolerance, thereby
allowing the choice to be based on other properties, e.g.,
speed, availability.

The total computing power of the system can be varied by
using units of different speed or by changing the number
of units.

During the current study all critical units of both hardware and

software have been studied. The following are the key results obtained:

There is no requirement for a central working memory,
but there is justification for a back-up, nonvolatile
memory, e.g., magnetic bubble memory (VI-C).*

Viable structures for the input/output subsystems have
been developed (VI-B).

Trade-off studies of the bus system design have been
carried out. Consideration has been given to cost,
component count, delay, bandwidth, reliability, and
structural simplicity of different bus structures, with

a conclusion that a two-level structure is preferred (VI-A).

*
Parenthesized notations indicate that chapter or section of this report
in which the particular result is discussed in more detail.
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e Adequate protection against external power transients
effecting the power supplies can be provided, and
fault-tolerance of the power system can be economically
achieved (VI-E),.

e Optical transmission offers a cost-effective way of pro-
tecting against induced transients in data paths.

e Satisfactory methods have been devised for allocating
tasks between processors and for devising and repre-
senting suitable schedules (V).

e Reliability analyses show that a system employing five
processors and four busses yields satisfactory reliability,
with greater replication yielding even better reliability (VII).

e Formal proofs of the reliability properties of the system
can be carried out in a rigorous manner, thus providing
assurance of the correctness of the design, and also the
correctness of the reliability model (VII).

¢ The design of the software, including the fault-tolerance
features, can be specified in a formal abstract manner,
thus enabling the proofs referred to above and assisting
in transporting the design across different hardware
implementations (VIII).
In carrying out the design study it has been necessary to develop
a methodology for design and analysis., While this methodology has been
aimed directly at the objectives of the current study, they have great
relevance in the wider context of fault-tolerant computer design and
beyond that to the design and analysis of computer systems in general.
The principal features of this methodology are:
e Techniques for formal specification of complex computer
systems,
e Techniques for formal proof of correctness of design.

e Techniques for the analysis of reliability of fault-
tolerant computer systems.

e Techniques for allocating tasks among processors and for
designing and representing schedules within processors
of a multiprogrammed multiprocessor computing system,

These techniques represent a powerful rigorous methodology of design

and analysis that can have a significant impact on future design efforts.



B. Qutstanding Problems

While our study has considered all the critical design and analysis

issues, there remain some outstanding problems both in the development of

" SIFT and in the design of fault-tolerant computers in general., The major

outstanding needs that we see are for:

Most of these problems are considered in the technical plan for

Continued refinement of the SIFT design to include all

design aspects and, in particular, to develop cost/performance/
reliability trade-offs to enable optimized versions of SIFT

to be produced.

More definitive data on the intrinsic reliability of different
electronic technologies, particularly the newest ones, e.g.,
CMOS Large-Scale Integrated (LSI) circuits,

Improved methods for the analysis of coverage, particularly
of diagnosis techniques .

More definitive data on the nature and incidence of massive
transient disturbances, e.g., as caused by lightning strikes,

A systematic study of the input/output units within an
aircraft (sensors, actuators, etc.) and of their per-
formance and reliability characteristics.

i

future development of SIFT.

o



IIT TECHNICAL PLAN FOR FUTURE DEVELOPMENT OF SIFT

A, Introduction

The material presented in this chapter was previously published
in November 1975 as an informal document. It is included here so that

this report can be a self-contained document.

The plan as presented here is that originally submitted. Sub-
sequent discussions between NASA staff and SRI have resulted in a
recommendation that certain tasks should be delayed from Step 2 to
Step 3. These are the tasks "Test Procedures'" and "Aircraft Test

Interface" as shown in Figure III-1.

The plan is presented in detail for the period up to November 1976,
by which time the design is expected to have been completed in sufficient
detail to enable procurement of equipment. The specification of system
software (local and global executives) will have been fully specified to
enable program writing to commence, The plan is presented in more gen-
eral terms for the period beyond November 1976. We discuss in this
document the importance of strong interaction with other segments of
industry such as the airlines, airframe manufacturers, avionics manu-
facturers, and semiconductor manufacturers, and also with other related
research and development centers, e.,g.,, NASA-Ames STP:AMD project and

NASA Houston Space Shuttle Development.

B. The Relevance of Analytic Techniques, Simulation, Emulation,

Experimental Models, Prototypes, and Flight Model in the

Development Process

1. Introduction

The primary goal of the SRI effort is a flyable SIFT computer
that can demonstrate the feasibility of an integrated-function, fault-

tolerant computer in commercial aviation. Because of the complexity of



such a computer and the importance of the demonstration, it is desirable
to achieve a high level of confidence in the design before a flight model

is built,

For a computer system, such confidence may be achieved through
various means of validation such as human design review, formal analysis
and proof, simulation, emulation, and the testing of physical prototypes.
Furthermore, in any very complex system it is common practice to proceed
with the validation in several steps, each step dealing with different
levels of abstration and approximation. Validation exercises can be
very expensive and time consuming, so it is desirable to choose a strat-
egy for validation that will yield a high level of confidence quickly

and with low cost.

The design approach SRI is using for SIFT is unusual in that
both the hardware and the executive software will have precise, formal
specifications. 1In this section we will present a plan for design vali-
dation that takes advantage of this design approach. We believe the

plan is both effective and economical compared to reasonable alternatives.

2, Outline of the Plan

We propose the following steps:

(1) Abstract specification and proof of software and
hardware.

(2) Design of programs and logic; investigation of
nonlogical® design issues.

(3) Validation of the design including construction
of a prototype computer.

(4) Testing of the prototype and construction and
certification of an experimental model flight
computer.

(5) Flight tests.

* ' . .
By "nonlogical' we mean factors such as packaging, device performance,
fault modes, etc., that are not included explicitly in programs or
logic designs.

10
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Between Steps 2 and 3 we propose that a design review take place.
This should be conducted by both SRI and NASA personnel or their repre-

sentatives,

Step 1 will include the executive software and the major system
modules, taken to a level of detail that comprises well-understood soft-
ware and hardware functions, Some fault-tolerance functions will be
parameterized to allow some user freedom in the choice of fault-tolerance
policies. Auxiliary software such as diagnostic routines and system

exercisers will not be included in this stage.

Step 2 will result in the complete specification of the com-
puter system to a level of detail that will be sufficient for equipment
and software procurement. The hardware specifications will include state-
ments of functional capability, performance parameters, reliability con-
straints, interface specifications, and packaging constraints., The soft-
ware specifications will also contain functional requirements and per-
formance parameters and, in addition, will be accompanied by sample im-
plementation schemes. Certain nonlogical design issues will be investi-
gated. These include choice of device and interconnection technologies,
packaging and shielding, power supply design, and specification of periph-
eral equipment such as displays and storage units., Information concerning
fault modes will be acquired and applied to the logical design and execu-

tive programs,

At this stage a design review should take place. The purpose
of this review is to make a detailed examination of the design, which had
not been possible before a complete design existed. While we are confident
that there will be little need for change in the basic system concepts, we
do see the possibility of changes in some of the parameters of the system.
This review should also examine the assumptions upon which the reliability

analyses were based.

The prototype computer to be procured in Step 3 will be realized
mainly in the same technology that is expected to be used in a flight-
experimental model. The software will be extended to include sample appli-
cation programs, in-flight diagnostic programs, and basic checkout pro-

grams. Instrumentation will be provided both in software and hardware,
13



and an external computer will be programmed to drive the SIFT computer

so as to simulate the aircraft environment, Hardware developments will
include power supplies, clocks and interconnections, and connections with
peripheral units such as bubble memories and aircraft circuits. The
computer will be analyzed in order to guide (1) the final design of inter-
connections and packaging and (2) the design of test procedures. As dis-
cussed at the end of the next section, a limited amount of evolution will
be allowed in the prototype. Examples of modifications that might be
planned are (1) change in interconnection technology, e.g., the intro-
duction of optical couplers and special power-supply circuits, and (2)
replacement of some changeable memories by read-only memories, e.g., for

microprograms or programs.,

The flight computer of Step 4 will be ruggedized and shielded
and will be provided with maintenance aids such as handbooks and diagnostic
tools. A full set of application programs will be prepared. The computer
will be certified for experimental aircraft installation, Our objective
will be that the flight model will differ from the prototype to only a
limited degree, and as such can be regarded as an evolution from it.

This view is justified by the fact that the SIFT concept allows for the
use of off-the-shelf units for the processors and memories. We can fore-
see changes between the prototype and the flight model in the bus system,
the input/output system, and the scale of the system as a whole and, in
addition, certain technology changes mentioned in the discussion of the

evolution of the prototype itself.

3. Justification of the plan

The proposed plan departs from conventional practice in two major
respects, First, formal system specification (Stage 1) is a much larger
effort in the plan than in conventional practice, which typically specifies
a system discursively. Our specification method is actually a very high-
level form of programming that not only is precise (to some level of ab-

straction), but also provides a capsule intuitive view of the system,

14




The second departure is that the plan does not include a major
component for testing, either by computer simulation or breadboarding.
We believe this omission is justified because we believe that the speci-
fication and proof methodology we are employing will leave very few design
questions unanswered, with the exception of certain nonlogical elements
such as power supply and packaging (we plan to allow as much testing for
these aspects as good engineering practice requires). Extensive testing
would thus constitute a wasteful diversion of time and money. Moreover,
we do not see the need for significant incorporation of innovative hard-
ware technologies which would need to be tested in a breadboard version

of the system.

Let us consider the usual arguments in favor of testing, and the

reasons why we reject them,

The usual role of tests is to help designers see just what
behavior is produced by the thing they have created, This purpose is

obviated by our specification methodology.

Another argument often tendered in favor of testing is that the
specifications may themselves be deficient, and that in the course of
preparing tests, individuals will think of input conditions and sequences
that may have been overlooked by the designers, The issue is how to vali-
date or confirm a designer's understanding of the system problem. We
believe that testing may be a weak tool for achieving this purpose, and
that given the present cost and power of testing, other more human-
oriented methods would be more effective., Such methods include:

(1) Good means for expressing, recording and displaying the

design and its documentation.

(2) Careful design review methods, such as redundant design
teams and "walk-through' (discussion of a design with an
outsider).

It is for this reason that we propose a design review at the end

of Step 2, i.e., before procurement of prototype equipment and software.

Yet another argument for testing is that it can expose assump-
tions made about primitve system functions. For example, the arithmetic

operations of a particular processor may not support the computational

15



i

methods assumed by the application programmer--or even the- claims of the
programming manual. This is indeed a significant issue., Computer simu-
lation will, in general, not be useful to solve this problem. We are
optimistic however that the problem can be deferred to the prototype stage

(Stage 3) without creating the need for major redesign.

The final argument for testing or simulation is that formal
validation methods cannot, in their present state of development, inform
the designer about execution speeds, Such information may be necessary
in order to set performance specifications for components, such as bus or
memory bandwidth and processor cycle-time. We believe that such informa-
tion can be obtained as needed by special analyses, including the use of
computerized models. Such models would be much simpler and easier to
create and use than general system simulations, emulations, or breadboards.
Fortunately, the SIFT distributed-computer design places very mild perfor-
mance requirements on system components for the chosen application domain,

so we believe that extensive performance analyses will not be needed.

Some further remarks about the prototype are necessary. As
described, the prototype will have essentially the same logic and use the
same device types as the flight model. The two will differ mainly in size,
completeness of program set, interconnection techniques, packaging, physi-
cal hardening, and the like, It might be argued that the design issues
involved in these various qualities might be resolved without the necessity
of building an operating prototype. It is perhaps too early in the course
of the design to be certain about this issue; however, the justification
for a separate prototype does not rest on its support of the design studies

implied by the differences listed,

Despite our confidence in the prospect for validation of SIFT
functional design, there are many nonlogical issues that may contain hid-
den implications on some aspects of the system logic. These issues in-
clude transient fault effects, accessibility and controllability for

diagnosis, and postspecification shortcomings in device performance.
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It would be desirable to uncover these "surprises' as early as
possible. There is therefore a case for introducing physical parameters

into the design of the prototype as early as possible.

To summarize, our view is that the issues that are typically
resolved by simulation and breadboard models can be delayed to the stage
of prototype testing because of the inherent flexibility of the SIFT

concept.

C. Recommendations

We see the development of the SIFT concept as a series of five steps

that can be briefly characterized as follows:

(1) Critical aspects of the design (current contract)
(2) Complete design of a SIFT system (extension to current contract)
(3) Building of a prototype of SIFT

(4) Prototype testing and procurement of a flyable model of SIFT
(5) Flight test and evaluation.

The remainder of this section details the above steps and defines
the work to be accomplished in them. The involvement of different organi-
zations (SRI, NASA, airframe manufacturers, airlines, semiconductor manu-

facturers, etc.) in the work is also discussed.

The technical plan is shown graphically in Figure III-1, with major
groupings of expected results of the present contract under Step 1 (e.g.,
Hardware Design). The plan shows the work steps up to the latter part of
1976 in detail (with each item being defined in Section C2), and less

detail for the steps beyond the end of 1976.

As can be seen from the chart, it is our view and recommendation
that a flyable model of the SIFT computer can and should be implemented
approximately in 1979. All of the preceding tasks have been designed
with that goal in mind. The exact phasing of the many tasks can be a
matter of negotiation, but the relative phasing is considered to be

as indicated by the arrows in the chart.

17



We foresee that the tasks to be accomplished in Step 2 will require
a level of effort slightly higher than that of the existing contract.
This will be augmented with cooperation from many industry segments, such
as airlines and semiconductor manufacturers. We show the point at which
this cooperation begins in Step 2, but continuing cooperation is implied
in the later steps, though this later cooperation is not specifically
indicated on the chart. During the later phases, this cooperation will
have to become one of active participation as equipment is procured and
the prototype and the flyable model are physically tested. We see that
the total level of effort in Steps 3, 4, and 5 will be significantly
higher than at present and that it will be spread over many organizations.
The exact details of the tasks to be performed in these later steps are
the subject of the procurement plan that will be prepared under Step 2,
at which time we expect to be able to detail the later steps so that a
complete determination can be made of the required funding for the re-

mainder of the program.

We consider that the major effort of Step 2 should be carried out by
SRI, with active discussion by industry and other research segments. This
combined participation will enable the effort to proceed with continuity
of personnel, with the advantage of maintaining the existing capability
and enthusiasm, while at the same time widening the community of those

who are involved in the total effort.

The participation of other industry segments in Steps 3 to 5 is
expected to increase very significantly. We see that the major role that
SRI should play in these later steps is one of technical leadership and
coordination, as well as being the research arm of the total effort in-
resolving issues that are at present unforeseen but become known as work
proceeds. In addition, we see that the scope of the total effort may be
changed with changing circumstances, causing a need to carry out research

that is beyond the scope of that which is currently envisioned,

1. Step 1 - Current Contract

The current contract calls for SRI to design and analyze all

critical aspects of SIFT. The following items are included in this effort:
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(1) General system requirements

(2) The definition and conceptual design of SIFT

(a) Bus and processor memory bus interface
(b) Processor

(¢) Memory

(d) Input/output interface

(e) Software

(i) Executive program

(ii) Sample application program
(3) Analysis and assessment of SIFT

(a) Thoroughness of fault analysis
(b) Proof of fault-tolerance procedures

(c) Modeling

(4) Technical plan for further SIFT development (this document)

(5) Reporting and documentation.

SRI has currently completed about 70% of this research, with
every indication that the objectives will be met., Very few new and
significant problems have been uncovered. The only one of great signifi-
cance is the matter of massive transients in the event of severe environ-
mental distrubances, e.g., a lightning strike on the aircraft. The tech-
nical plan for Step 2 as presented below describes the actions that are
proposed for dealing with this problem (see d and h under Step 2,

following.

2. Step 2 - Complete design of SIFT

This subsection defines the tasks that constitute Step 2 in the
technical plan. Each major task or group of tasks is separately defined

in the sections a through j.
a, General - The overall goal is to specify fully a represen-
tative SIFT system to a level of detail satisfactory for procurement of

all hardware and software components. The particular configuration of
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SIFT that will be chosen for this purpose will be appropriate for carry-
ing out a reasonable set of aircraft application tasks chosen after con-
sultation with both airlines and airframe manufacturers. Throughout this
study, close contact will be maintained with both semiconductor and avi-
onics manufacturets so as to provide an efficient involvement of them in

the building of a prototype to be carried out in Step 3 of this program.

b. Application Tasks - First implementation of the SIFT system

should include only a subset of the total on-board data processing system
that is projected for jet transports of the 1980-1985 period. This will
make much more economical the task of realistic evaluation of the fault-

tolerant techniques and procedures that are to be incorporated.

One objective will be the selection of those application
tasks that can most readily and effectively be incorporated into the proto-
type system. The subset of tasks must be adequate and sufficiently varied
to provide meaningful test results for analysis. In addition, the system
must be planned to meet the constraints imposed by operational, economic,
and procurement factors, The application task selection must therefore
be based in part upon the recommendations, facilities, and equipment pro-
vided by various segments of the airline and data processing communities.
Among those to be consulted in the task selection are the following:

e Airlines--As currently visualized, cooperation of one
or more airlines will be sought to provide a commercial
airline environment to enable generation of a true
operational interpretation of system test results.
Close liaison should be established with airline per-
sonnel at an early date., Operational and economic
aspects of the operations of the airline(s) will most
probably impose limitations on the functions that can
in a practical sense be incorporated into a prototype
test sytem.

e Research and development agencies--Throughout the past
few years, a considerable amount of effort has been
directed toward the design and test of digital systems
for certain aircraft control and related functioms.,
Agencies and companies such as NASA, the U.S. Air Force,
and Boeing have been at the forefront of such programs.
Liaison will be established with such organizations in
order to exploit the results of those efforts.
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o ARINC--Tt will be desirable to specify the prototype
system to be consistent with existing and projected
standards insofar as feasible, provided that the basic
goals of the project are not jeopardized. Accordingly,
direct contact will be made with agencies such as ARINC
(Airline Radio, Inc.) to achieve the desired measure
of system standardization and compatibility.

c. Hardware Design - A complete specification of all hardware

components of a SIFT system will be prepared to a level of detail suffi-
cient for procurement of a prototype from commercial vendors. The speci-

fications must include all aspects including:

Functional capability
Size, speed, and performance parameters

Reliability constraints

& o o o0

Interface specifications

Packaging constraints

To provide assurance that the specified system can be im-
plemented effectively and economically within the projected time frame,
contact will be established with vendors of computers, data communication
equipment, interfacing hardware, and semiconductor products. In some
cases, standard product lines can possibly be modified slightly to accomo-
date the requirements of the prototype system. For example, data com-
munication elements will be modified to be compatible with the specified
bus structure of the prototype system., Liaison will be established with
appropriate departments of such organizations to facilitate specification

of any such modifications that may prove to be necessary.

d. Software Design - The software of the SIFT will be fully
specified., For the system software (Global and Local executives), the
formal specifications prepared under the current contract will be aug-
mented to the level of detail that can be used for procurement., This
will involve preparing sample implementation schemes and providing firm
estimates of those variables in the system that are currently parameter-

ized in the formal specifications.
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The set of application tasks (item 2b) will be specified

in a similar manner to the system software.

The specifications will include full details of acceptance
tests to be used for evaluation. The use of programming languages at
different levels will be specified. Any special measures to be taken to

assist in validation of the software will be specified.

Techniques should be investigated for providing a scheme
for achieving fault-tolerant application software, Such studies should
include consideration of the concept of '"Recovery Blocks" as developed
at the University of Newcastle, England, or derivatives of it specially

adapted to the SIFT concept,

e. Aircraft Interface - The SIFT system will require digital

data transmission from a multiplicity of instruments, sensors, radio-
frequency units, and other peripheral input units, and transmission to a
multiplicity of actuators and display units. One of the tasks will there-
fore be to specify the total data communication system., Some of the sa-

lient factors to be considered are as follows:

e The basic system--Various techniques for accessing and
transmitting the data are possible. For example, a
fully buffered system could be devised, or a simple
polling system can be implemented at less cost in hard-
ware but at greater cost in time requirements.

A third alternative would be to provide an interrupt
system whereby the individual data source notifies the
computer via an interrupt that new data are available.

Requirements, advantages, and tradeoffs of each of the
candidate data communication techniques will be con-
sidered and recommendations made for each input and
output variable,

¢ Protocol--For each data communication technique to be
used, specific procedures will be established for proper
control of the individual communication function,

e Synchronization--For some of the prototype system
functions, relatively noncritical "macrosynchronization"
among the various types of units and among replicated
units of a given type will suffice for proper system
operation. In general, synchronization of this type
can be accomplished by proper polling sequences and
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the like. However, there may be some functions for
which time synchronization will be more critical, and
for which special synchronization must be provided.
This possibility will be given special attention.

e Data validity--For a high reliability system, accuracy
of data transmission will be extremely critical. The
basic data communication system will therefore neces-
sarily include data verification as a major considera-
tion. Use of various techniques such as parity, hash
totals, and check digits will be considered in the
system specification.

e Data transmission noise-~In computer installations such
as those in aircraft where various system elements are
widely separated, and where (electronic) data pulse
fronts are relatively sharp, grounding problems some-
times lead to generation of '"noise" pulses on the data
lines that can cause errors in reception of the data.
In addition, errors can be caused by such phenomena as
lightning strikes on the aircraft and the consequent
induced signals on the data lines. Potential problems
of this type will be discussed with airline, research,
and vendor personnel, so that system specifications can
be prepared with a high assurance that problems of this
type can be circumvented. It is possible that optical
data transmission via glass or plastic fiber lines may
prove to be satisfactory as a technique for interunit
transmission for some or all of the data in the on-board
system.

f. Maintenance Aspects - Ideally, any system--electronic or

mechanical--would throughout its full life be free of any faults that
would require either preventive (scheduled) or fault-forced (immediate)
maintenance. The architecture of the SIFT system precludes the need for
the latter type. It is necessary to consider scheduled maintenance pro-
cedures that do not include extensive disconnection of system components,
probing of circuit boards with oscilloscopes and voltmeter probes, etc.
Airline experience has consistently indicated that additional system
faults are often caused by such well-intentioned but fault-prone proce-
dures themselves. Rather, SRI considers that the scheduled maintenance
should be a preflight "test and verification" (T/V) procedure, whereby

the various system modules are exercised automatically, e.g., via
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prestored programs, and either approved as valid (verified), or flagged
as faulty.* In the latter case, at least some minimal method of auto-
matic diagnosis should be incorporated to designate, via printout or
display, the faulty module so that it can be replaced with a minimum of

effort and time.

The economic effect of different maintenance policies on
airline operations should be considered. Analyses should be carried out
to determine the conditions under which different maintenance policies
are advisable; for example, one policy may be appropriate for a short-

haul use while a different policy may be appropriate for long-haul use.

g. Reliability Analyses - As the design of the SIFT system

becomes defined in progressively more detail, it is necessary that the
reliability analyses carried out on the current contract be updated. As
new data becomes available on fault statistics, it will be necessary to
examine their effect on system reliability and in particular to determine
if changes are therefore required in the design. The reliability analyses
carried out under the existing contract will have to be extended to in-
clude consideration of the various input/output units, including the sen-
sors and actuators of the aircraft. The analyses will also be extended

to take into account all the different fault-tolerance procedures that

are possible within the general framework of the SIFT concept.

h. Transient Behavior - As with fault-tolerant computer de-

1-

signs, a cause for concern is the possibility of a massive transient

*Current plans are to incorporate, in a background mode, continuous test-
ing of this type for all processor modules during real-time flight
operations. It is further suggested that the status of each processor
be indicated on the flight deck in some simple manner such as (l) green
light--processor operation valid; (2) amber light--monetary (transient)
fault detected; or (3) red light--processor outputs blocked from the
system because of continuing faults.

TSuch transients are typically caused either by lightning strikes or by
other disturbances of the electrical system of the aircraft.
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that causes multiple faults and perhaps multiple errors in the system.
The approach to be used in dealing with this possibility consists of

three parts.

First, it is necessary to collect data relevant to the
problem of transients. Airlines and airframe manufacturers have signifi-
cant data relating to this matter. Tests have been made on aerospace
computers at NASA Houston and other sites. Other experiments at SRI and
elsewhere have examined the effect of large electromagnetic fields on
electronic equipment. It is hoped that these data plus consultation
with experts in this field will enable an estimate to be made of the
effects of such phenomena on an aircraft computer. Some tests may need

to be carried out to answer specific questions on this issue.

Second, schemes must be developed to reduce the probability
of such massive transients in the system. Such schemes must include as-
pects of shielding, improved grounding systems and, as just mentioned,
the use of optical data links for the larger path-lengths external to

the computer system itself.

Third, within the SIFT system, techniques must be developed
for recovery from such transients. This may involve software techniques
such as an automatic restart capability, and/or hardware techniques such
as the provision of a highly protected, nonvolatile back-up memory to
store critical state variables to assist recovery after a transient,
Recovery speed requirements for these variables may require a special

memory in addition to the general system back-up memory.

i. Diagnosis - The viability of the error detection and re-
covery strategies in SIFT relies on the freedom from faults of most of
the SIFT units that are performing computations. Assuming a majority-
vote strategy, there are double failures that cannot be tolerated. At
the beginning of a flight, it is essential that all units, or possibly
all units except one, are fault-free. We do not advocate the use of
special test equipment to accomplish preflight checkout of fhe computer.
Instead, the checkout is to be carried out by executing special diagnosing

programs that flex the various system units, e.g., processors, memories,
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busses, I/0 processors. During the present year's research, we also
identified the need to carry out periodic, inflight, diagnosis of the
hardware units that are not flexed during normal computation. This peri-
odic diagnosis reduces the probability of multiple faults remaining un-

detected.

There has been extensive work on logic circuit diagnosis,
from both a theoretical and a practical viewpoint. Much of the practical
work has been carried out by the semiconductor manufacturers toward testing
LSI chips as they emerge from production. This work is not adequate for
our purposes since it relies on special test equipment (signal generators,
probes, oscilloscopes) and since it does not guarantee complete coverage.
The theoretical work has been concerned with developing diagnosing se-
quences that if applied to a circuit will determine if it is faulty.

This work is attractive from our viewpoint since it relies on the circuit
interfaces only. (The Computer Science Group of SRI has done extensive
work in this area under commercial and NASA-ERC sponsorship). However,
the theoretical work is not adequate since it typically assumes that the
only fault mechanism is a gate being stuck at zero or stuck at one. It
is known that LSI circuits exhibit a failure behavior which is signifi-

cantly more complex.

Our approach will first involve technical discussions with
semiconductor manufactures to determine the actual failure behavior. Pre-
liminary discussions have indicated that the following failure behavior
can be expected:

e All types of single gate failures, including input-

output shorts, open-outputs, etc.

e Shorts between contiguous gates on a chip. This fault
assumption precludes the development of test sequences
that are based entirely on the logic diagram.

e Failures that occur only under maximal gate loading
conditions, This fault seems to be manifested as
input gate failures for some of the gates driven by
the failed gate.

After identifying the failure behavior we will study the

development of the sequences that will reveal the occurrence of the
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expected failures. During Step 2, we intend to develop appropriate tech-
niques; the writing of actual diagnosing programs must await the procure-

ment of hardware in Step 3.

j. Procurement Plan - Detailed plans will be drawn up for the

tasks to be accomplished in Steps 3 to 5. These plans will incorporate

for each task the following items:

e The specification of work to be accomplished
e The estimated time to accomplish the work
o The estimated cost of carrying out the work

e The qualifications required of organizations that could
carry out the work

e Conditions of delivery and acceptance criteria

e A tentative list of candidate organizations to carry

out the work,

The procurement plan will also define the interaction
between the separate tasks. In particular, it will identify the critical
path(s) in the development and the manner in which the procurement plan
is intended to protect the plan as a whole from being jeopardized by

failure to carry out any particular task.

The plan will consider methods that are possible for
contracting this work, for example, the use of subcontracting or the
issuing of independent contracts. The overall management of the develop-
ment will be considered and recommendations made as to the way in which

the separate efforts will be coordinated.

3. Design Review

Between Step 2 and Step 3 we anticipate a design review. This
will be carried out by NASA personnel or their representatives in consul-
tation with the SRI design team. The purpose of this review is to re-
examine the design from the point of view of completeness and correctness
and to check its appropriateness for the application set for which it is
intended. At this point, it will also be possible to review the various

estimates to timescale and funding that will have been prepared in the
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procurement plan in Step 2, Heavy involvement with airlines, airframe

manufacturers, and avionics manufacturers will be desirable in this review.

4. Step 3

There are three major objectives of Step 3: hardware procure-
ment and integration, software procurement and integration, and the de-
velopment of a test facility. It is recommended that SRI continue to
play a central role in this development step but that the major develop-
ment of hardware and software be carried by organizations specializing
in those fields. This way of organizing the development of a prototype
has been used extensively by SRI with great success. In one case, we
have carried out the role of system integrators for a mobile digital
packet radio network, with radio and computing equipment being supplied
by vendors in those fields. 1In another case, SRI is the system inte-
grator in the development of a blind landing system for FAA. The design
of SIFT greatly facilitates this kind of operation in that there is a
high degree of functional independence among the various units of either
hardware or software. It is thus relatively easy to specify individual
procurements, with the final integration to be carried out after delivery.
Our design methodology for preparing formal specifications and for de-
fining the functional hierarchy of the system also makes independent pro-~

curement of parts of the system a practical strategy.

The integration of the various parts will involve the building
of limited amounts of special hardware (e.g., the bus system), and also
the writing of limited amounts of programs (e.g., the programs used for

prototype tests),.

a. Hardware Procurement - It is planned that as part of Step 2

we will have already determined those organizations that are qualified to
act as suppliers of the processors and memories, which represent the major
hardware components of the system. It will be necessary in Step 3 to pre-

pare formal requests for bid from these organizations for each of the

hardware units. Following evaluations of these bids, purchase orders or

development contracts will be drawn up for procurement of equipment.
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We anticipate that these actions will have been taken in the first few
months of Step 3, thus enabling the eventual procurement to be completed
after 9 months into Step 3. The remaining 3 months of Step 3 will be
devoted to the integration of the hardware. This will be greatly facili-
tated by the prior development of the special hardware that is necessary
for integrating the whole system. In procuring the major units of hard-
ware, it is anticipated that, to a large extent, standard off-the-shelf
units can be used with very minor modifications. We anticipate that many
suppliers may be involved; for example, it may be desirable to procure
main processors from an avionics computer manufacturer and input/output

processors from an LSI microprocessor manufacturer.

As the prototype evolves, there will need to be continuing
effort, primarily concerned with the details of the circuit technology
that is used but also involving questions of packaging and interconnec-
tion. We expect that the first version of the prototype will use con-
ventional technologies in these units but will evolve to become very

similar to the eventual flight model that is planned in Step 4.

b. Software Procurement - The major software procurememt can

be broken down into two parts, system software and application software.
The system software will have been fully specified in Steps 1 and 2 and
can be let out for bid using these specifications. The applications
software will be specialized to the particular aircraft functions that
are determined in Step 2 and will be greatly influenced by the type of
aircraft that is to be the eventual test vehicle. Considerable gain may
be had by procuring the application software from the same organization
that is selected to supply the major hardware components, particularly if

the latter is an avionics manufacturer.

We see that the organizing of the software procurement can
be achieved in the first 3 months of Step 3, particularly when we take
into account the preliminary actions that will have been taken in develop-
ing the procurement plan of Step 2, for example, the prior selection of
one or more candidate organizations to accomplish the necessary work. It

is expected that the actual procurement of the software will be possible
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in a period of 6 months, with the final 3 months of Step 3 devoted to the

integration of the several components software.

c. Development of a Test Facility - In testing the prototype

(Step 4 below) it will be necessary to provide an adequate test environ-
ment. This involved two major components, the connection of the proto-
type to simulated input and output units and the generation of appropriate
test data., We foresee the setting up of a test generation facility based
upon a general-purpose computer suitably programmed to generate the

appropriate test signals.

d. Flight Model Packaging - Also to be included in Step 3 is

the development of packaging techniques for the flight model. 1In this
task we would expect that the experience of avionics equipment manufac-
turers would be directly applicable, and in such case we anticipate that
this task would be a relatively small effort. The major novelty to be
incorporated is the provision for protection against the effects of elec-
tromagnetic disturbances. We also see the possibility of some problems
in incorporating optical coupling between units while maintaining the

integrity of any required shielding.

5. Steps 4 and 5

The major activities of Steps 4 and 5 are the testing of the
prototype and the building and testing of the flight model. The tasks
to be accomplished in these steps are shown in the accompanying chart.
As stated previously, we see that the flight model should be an evolution

from the prototype rather than a completely new design.

We anticipate that the technology of the flight model will be
very closely related to the prototype. One scheme would be to use a
set of processors and memories from a minicomputer manufacturer, which
in the prototype would be constructed using conventional circuit board
techniques, and to use a ruggedized version of the same hardware in the
flight model. This scheme is very attractive in that much of the sup-

portive design work would not be changed in going from the prototype to
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the flight model. It would include the design of special equipment
(busses, interfaces, etc.), the software system (executive and application
programs), and the test procedures and facilities have been designed for

the prototype.

The approach suggested above might preclude the use of advanced
technology components such as LSI circuitry, but this is considered a
small risk in view of two factors:

e It is unlikely that the flight model would be built using

radically new technology because of the untried nature of
such a technology and the lack of data on its reliability.

e Any LSI components that are suitable for the flight model
will probably be preceded on the market by the same type
of equipment implemented in a less advanced technology.

In testing the flight model, a suitable research aircraft
environment will be required. We understand that NASA Langley is equipped
with such a facility and anticipate that it can be used for testing.

For this reason we see a strong involvement of NASA personnel in these

steps.
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IV THE SIFT CONCEPT

A, Introduction

In recent years, a number of fault-tolerant architectures [Refs. 1-41
have been devised and in some cases analyzed and implemented. Most of
these architectures depend heavily on special hardware structures to
achieve their fault-tolerance. While hardware mechanisms are fast and
economical, they are severely limited in the kinds of faults they can
treat. Also, such mechanisms cannot be easily modified to reflect changes

in performance and reliability requirements.

The SIFT (Software-Implemented Fault-Tolerance) computer [Ref. 5]
is founded on a new approach to fault-tolerant computing that puts strong
emphasis on the use of software for achieving reliability, with correspond-
ing de-emphasis on special hardware. The software that is critical to the
reliability of the system is designed in accordance with a hierarchical
design methodology [Refs. 6] that permits the stating and proving of
formal properties relating to the system's correctness. A Markov process
model is used to analyze SIFT's reliability as a function of various
error-detection and reconfiguration strategies. The reliability model
is incorporated into SIFT's formal description, permitting the demonstra-

tion that the model indeed reflects the behavior of the system.

The remainder of this chapter is concerned with the goals of the

SIFT system and a narrative description of its operation.

We believe that the SIFT concept is useful in many application areas
where high reliability is at a premium. Although a system might have
extensive redundancy, if the software or hardware mechanisms that manage
the redundancy are incorrect, the system will still be unreliable. Later
chapters show how formal verification methods can be used to ensure that
the present system is correct. We have attempted to develop a precise

statement, in terms of a Markov-like model, of the behavior of SIFT in
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the hierarchical decomposition of the SIFT software to facilitate its
verification. We believe this is the first attempt to specify formally

a fault-tolerant system.

We think that it will be possible to verify formally the SIFT soft-
ware, because it is relatively simple and because it is highly structured.
Although SIFT exhibits some of the features of a modern operating system,
e.g., task dispatching and (limited) memory management, it is much simpler

than other systems being considered for verification [Refs. 6-7].

B. SIFT Performance and Reliability Goals

SIFT is a general-purpose computer intended for use as the central
computer in advanced commercial aircraft. The computational requirements

[Ref. 8] for the aircraft environment can be summarized as follows:

e The control features can be broken down to about 20 tasks,
e.g., engine control, stability augmentation, and collision
avoidance, that must be serviced. The computer is designed
so that it could service the fastest tasks every 1l msec.

e The reliability requirement is dependent on the task. The
tasks that are flight critical must exhibit a failure rate
not exceeding 10-9/flight-hour. This high reliability can-
not be achieved with current hardware technology without
redundancy.

e The programs and associated data that implement the tasks
are of moderate size.

e A task might require input data from one or more other tasks
(typically only a few words). No other type of communication
exists between tasks.

¢ TInput from aircraft sensors can be accomplished by reading
multiple copies of sensors, and in some cases the output
can be delivered to multiple actuators.

C. SIFT System Design

The SIFT computer (Figure IV-1) conists of a number of hardware mod-
ules, each composed of a memory and a processing unit. The individual
processing units within the modules are connected to the corresponding
memory units with wide-bandwidth busses. The intermodule bus organization

(BI’BZ’BS) is designed to allow a processor to read from any memory but
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not to write into other memory units. The intermodule bus is expected
to have a much lower bandwidth than an intramodule bus because of the

relatively low rate of information flow between tasks.

The input/output system assumed to be connected to the busses Bl’
B2, and B3, as shown in Figure IV-1, consists of all the noncomputing
units, for example, transducers, actuators, and sensors. The part of
the total input-output that is carried out by program, such as formatting
or code conversion, is handled in the same manner as for any other task;

that is, it is replicated in several processors.

All large tasks are broken into a number of subtasks in such a way
than no subtask requires more computing power than can be supplied by
one processor. The tasks are given the designations, A, B, C,...; the
processors are numbered 1, 2, 3... . Each processor is capable of being

multiprogrammed over a number of tasks, as illustrated in Figure IV-2.

The control of the computing system is carried out by a number of
functions that can be segmented into two classes:
(1) ZLocal Executive: functions that apply to each processor

(e.g., dispatching,* voting, reporting errors, loading
new task programs).

(2) Global Executive: functions that are global to the sys-
tem (e.g., allocation and scheduling of work load, recon-
figuring).
A complete set of the software functions of the Local Executive is
present in each processor; those of the Global Executive are carried out
in a sufficient number of processors to provide the degree of fault tol-

erance required. The functions are realized by programs that have the

same task structure as all other programs.

The normal operating mode for a processor carrying out a task is as
follows: Data required for the task are assumed to have been computed by
several processors (possibly including the same ones carrying out the

task). The input data are read from the several processors where copies

*
The bus logic envisjoned does not use voting. The number of busses is
variable. The number 3 is chosen for convenience of discussion.
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exist. A validation is now carried out, typically by a vote among the
several values of each datum. If any of the copies of the input data
are found not to agree, this fact is noted for later processing by the
executive. During the reading of the different versions of a data item,
different busses are used in order to protect against errors in bus op-
erations. The computation of the task is now carried out; the results
are left in the memory of the module, and note is made (in the module)

of the fact that the task is computed.

If discrepancies are detected between the several versions of a data
object, diagnosis programs in the global executive determine which unit
is at fault. Reconfiguration is achieved by having the several versions
of the global executive indicate to each local executive which tasks
should be performed and which other processors should replicate the cal-
culations for each task. All the local executives examine each of the
global executive versions and independently vote on these directions.
That is, each local executive decides which of the reconfiguration direc-
tions it will accept, using a majority rule. A faulty processor might
not heed the directions of the global executive, but, based on the instruc-
tions of the global executive, operative processors will ignore the
faulty processor. Thus the worst impact of a faulty processor is that

it will exert a slight load on the bus system.

D. The Design Methodology

The SIFT design has been specified in accordance with a formal de-
sign methodology that originated with D. Parnas [Refs. 9,10] and has
been extensively developed at SRI [Ref. 6]1. The chief reasons for using
such a medium were (1) to impose a discipline on the design process as-
suring a clearly-structured, easily modified design; (2) to simplify ver-
ification of the correctness of that design; and (3) to facilitate the
analysis of certain reliability properties. Previous use of the method-
ology has been concerned with only the first two of these aims. The SIFT
effort is the first instance of its use in connection with fault-tolerant

design.
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The methodology can be viewed as a formalization of Dijkstra's
step-wise refinement concept [Ref. 11]. The central idea is to decompose
the design into a hierarchy of modules. The highest modules in the hier-
archy provide an abstract, global description of the system's capabilities.
Modules at lower levels of the hierarchy serve as building blocks for
implementing the highest-level module. Modules at still lower levels are
building blocks for implementing those at intermediate levels, and so on.-
The modules lying near the top of the hierarchy thus tend to be highly
abstract, while those at or near the bottom tend to be more concrete. In
the SIFT design, for example, descriptions of real machine hardware ap-
pear at the bottom level, and a set-theoretic model of the workings of

the system appears near the top.

Each module in the hierarchy is specified in terms of a set of ab-
stract data structures (called V-functiong) plus a set of operations
(called O-functions) that change the values of these structures. At any
given moment, the state of the module is determined by the aggregate of
the values of its V-functions., O-function calls thus cause transitions
from one state to another. The V-functions and P-functions of each mod-
ule are specified using a formal language. The specifications describe
what happens when each of the functions of a module is called. Specifica-
tions for O-functions consist of assertions, i.e., logical formulas that
relate the state (values of V-functions) of the module before an O-function
call, to the state resulting from the call. Module specifications have
other aspects [Ref. 12] that are discussed in greater detail in Chap-

ter VIII.

E. Design Features of SIFT

This section is concerned with the more important design decisions

that we have formulated_for SIFT.

1. Task Dispatching

In the aircraft application, most computations are iterative.
Thus, tasks are executed on a regular basis with a frequency that is de-

pendent on the application. Noniterative tasks can also be handled
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within this scheme with no apparent difficulty. Dispatching is accom-
plished via a fixed schedule that is stored in each processor. Three
periods, or frames, of a possible schedule are depicted in Figure IV-3.
The maximum task iteration rate, or frame rate, is determined by the
frequency of the "clock-ticks," which can be derived from an ultrareliable
system-wide clock, or via a clock associated with the processor in ques-
tion. For the latter option, the clocks in the respective processors are
loosely synchronized. The synchronization requirement is that no pro-
cessor is to commence iteration n of a task before iteration n-1 has been
completed on all processors executing that task. Thus, the slowest pro-
cessor should not slip behind the fastest processor by more than one

frame.

CLOCKTICK
’

FIGURE IV-3 SNAPSHOT OF A SAMPLE SCHEDULE

In the example, tasks A and C are dispatched every frame, and
task B every two frames. Note that task C is not dispatched at the same
relative time in each frame. For the application being considered, this
is an allowable perturbation. Each of these three tasks is intended
to execute to completion during each frame in which it is dispatched,
thus obviating the need for many mechanisms usually associated with
multiprogramming. A task that for some reason does not complete the
iteration by the end of its allotted time is halted in favor of the next
task. In Figure IV-3, A designates an interval in which the processor

is in a noncomputing state, awaiting the next clock-tick.

2. Task Communication

Each task is processed according to the following scheme:

READ DATA FROM EACH TASK SUPPLYING INPUTS
COMPUTE
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WRITE DATA TO A BUFFER FOR EACH TASK THAT REQUIRES

IT AS AN INPUT
We are assuming that any data a task requires for the execution of an
iteration is obtained from output data computed by the previous iteration

of the same and other tasks.

Since SIFT does not allow any processor to write directly into
the memory of another processor, the WRITE DATA operation is accomplished
by using a buffer that resides in the writing task's processor. If B is
to write data for A, B deposits the data in a buffer that can be subse-
quently read by A, which may be executing in the same or in other pro-

cessors.,

The READ DATA operation, say by task A from task B, is imple-
mented as follows: The data deposited by each version of B, in its own
buffer, is read, and the majority value of the several versions of the
data is computed by each version of A. In order to tolerate bus failures,
each version of B is read via a different bus. The disagreements reported
by the aggregate of processors are used to locate faulty processors and
busses. Some of the data required by a task are obtained from external
sources, which can themselves be viewed as tasks replicated for relia-
bility enhancement. However, the various instances of a given input
datum are not likely to be identical because of slight differences among
real physical data sources. Such slight disagreements can be prevented
from causing a vote disagreement by providing a mechanism whereby a task
performing a read can specify the precision expected among the various

instances.

When task A votes on the data computed by several instances of
task B, these data must all be associated with the same iteration of B.
Consider the task timing illustrated in Figure IV-4. Since all instances
of the tasks executing in different processors are not assumed (nor in-
tended) to be mutually synchronized, and if only one buffer were pro-
vided per processor per writing task, then iteration n of task A in P2
would read data from iteration n-1 from A in P2, but from iteration n

from A in Pl. This problem is resolved by providing two buffers in each
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processor for each writing task, one which is written into on odd-numbered

iterations and the other on even-numbered iterations.

3. Detection and Location of Processor and Bus Failures

In this section, we discuss the method whereby the global exec-
utive can determine which processor or bus is faulty, based on the error
reports of each of the processors. For simplicity, we assume triplica-
tion of processors and busses, so that single faults can be tolerated and

located. The generalization to general redundancy is not difficult.

On behalf of a task, a processor will read data from other pro-
cessors that, in the absence of faults, should be identical. If one of
the data instances, as read by a processor, is in disagreement, then the
processor will record the identity of the disagreeing processor and the
identity of the bus used. The global executive will examine the processor-
bus discrepancies reported by each of the processors and attempt to iden-

tify the processors(s) and/or bus(ses) that are faulty.

The following four fault types cover all possible single pro-

cessor and bus fault occurrences that could lead to erroneous results:

(1) Processor computation and/or voting (PCV)--A pro-
cessor produces erroneous values in computing re-
sults for tasks and/or in performing a vote and
deciding which input(s) to the vote is in disa-
greement with the majority.
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(2) Bus transmission (BT)--A bus changes the value
of a word as it is transmitted between processors.

(3) Processor-bus in initiating reading (PBIR)--A pro-
cessor is incapable of initiating a read operation
via a particular bus.

(4) Processor-bus in depositing data (PBDD)--A proces-

sor is incapable of depositing data onto a par-
ticular bus.

To illustrate the fault location algorithm, suppose that on
each iferation, a task reads data from a previous iteration of itself.
The task executes on three processors and uses three distinct busses for
the read operation. For odd iterations, the bus assignment is as in
Figure IV-5a and for even iterations as in Figure IV-5b. The interpre-
tation of the matrices is as follows: the Pl row of Figure IV-5a indi-
cates that when Pl reads from Pl it uses bus B1,* when P1 reads from P2

it uses Bus 2, and when Pl reads from P3 it uses B3. It is apparent

READ-FROM PROCESSORS READ-FROM PROCESSORS
READING P1 P2 P3 . READING P1 P2 P3
PROCESSORS PROCESSORS
P1 B1 B2 83 P1 B3 B1 B2
P2 83 B1 B2 P2 82 83 B1
P3 B2 B3 81 P3 B1 B2 83
(a) ODD-ITERATIONS . (b) EVEN-ITERATIONS

FIGURE IV-5 BUS ASSIGNMENTS TO ENABLE SINGLE FAULT LOCATION

It is, of course, feasible for a processor in reading from itself to use
the internal processor-bus connection which is of a higher bandwidth than
the inter-processor bus system. However, in this discussion we assume
that the bus system is used for all read data operations. This avoids

the need for a separate fault location algorithm when a task reads data
from a task in its processor.
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that for either assigmment, the occurrence of any one of the four fault
types leads to an error which is masked by the voting scheme. It remains
to show that a fault can be pinpointed to a processor, a bus, or a

processor-bus connection (type 3 or 4).

The fault location algorithm is illustrated in Figure IV-6, for
a fault of each of the four types. 1In the case of a type 1 failure in-
volving P1 (Pl computes erroneous results for the task and/or produces
erroneous, and arbitrary, error reports), from the reports of P2 and P3
it is apparent that Pl is faulty and that its error reports should be ig-
nored. The only possibility for ambiguity is between a type 1 failure
(Pl voting incorrectly) and a type 3 failure (Pl unable to initiate a
read via Bl), Both failure types could produce the same error report
(although it is unlikely that for a type 1 failure this would be the case),
in which case the global executive would first suspect a type 3; the sub-

sequent use of Pl could actually reveal the presence of a type 1 failure.

A faulty unit should be identified shortly after the detection
of the failure by the voting processors. The global executive will then
instruct all processors to ignore the faulty processor or not to use the
faulty bus. This process is well known as adaptive voting, [Refs. 13, 14]
and enables SIFT to tolerate some multiple faults that may occur before

reconfiguration can be completed.

After the identities of the faulty units are known to the glo-
bal executive, it initiates a reconfiguration process, so as to utilize
effectively the remaining operative resources. After the reconfiguration
is complete, the allocation of tasks to processors and busses could be
entirely different from that prior to the reconfiguration. As a result
of the reconfiguration, processors might be given new schedules, and
the processor and bus allocation tables in each processor must be up-
dated.

The formulation of new bus assignments after detection and lo-
cation of a bus failure is easily carried out by the global executive.
It is feasible for the global executive to compute in real time new task

allocations and schedules in response to each processor failure.
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PROCESSOR-BUS (P1,81) (P2,81) - - - - ONLY P1 REPORTS ERRONEOUS
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P1,81)
PROCESSOR-BUS, (P1,B1) - - - - {P1,81) TWO DIFFERENT PROCESSORS
DEPOSITING DATA REPORT ERRONEOUS RESULTS
{P1,B1) INVOLVING P1 AND B1
FIGURE IV-6 ILLUSTRATIONS OF FAULT-LOCATION ALGORITHM




An alternmative approach is to precompute the allocations and schedules
for all possible processor fault occurrences. We are now using this

latter approach, since the storage requirements are small.

A global executive instance cduld reside in each processor, and
thus assume the entire responsibility for reconfiguring that processor,
based on the error reports of all processors. Besides deriving new
schedules and bus assignments for its processor, each global executive
updates tables and loads new tasks into the processor. However, in order
to minimize the executive computational load on the processors, we have
decomposed the executive tasks into two parts: (1) a global executive
task, residing in at least three processors, which computes new allocations
and schedules for each processor, and (2) a local executive residing in
each processor, which determines what its new configuration should be by

voting on the three global executive instances.

F. The Logical Structure of SIFT

The preceding discussion has summarized the primary operation of
SIFT. 1In this section, we consider a hierarchical decomposition of the

system.

The logical structure of SIFT consists of a hierarchical layering

of modules, which we designate as system modules, and some programs,

namely the application tasks and the global and local executives, that
utilize the facilities of the external interface of system modules. For
simplicity, we will say that the tasks call the functions of the interface.
Each system module may be considered as an abstract machine that maintains
a state (represented by V-functions) and provides operations (O-functions)
to modify the state. The application tasks and executive may then be
considered as programs that run on the abstract machines. The data re-

quired by the tasks are distributed among the system modules.

Each task, including the global executive, executes in some subset
of the processors. The fault status and fault schedules modules, which
are accessed only by the global executive, appear only in processors

executing the global executive.
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It is assumed that the real-machine module describes the ordinary
machine instructions, e.g., add, store. 1In reality; the tasks and all
modules above the hardware will call these instructions and thus should
be depicted as connecting to the real machine. We will not concern our-
selves with these connections here since they are not essential to the

fault-tolerance, reliability, and scheduling properties of SIFT.

G. Discussion

The SIFT concept embodies a number of ideas whose usefulness extends
beyond the particular application for which the system'is.designed. Be~
cause conventional, off-the-shelf processing units comprise the bulk of
the hardware, the system can be easily and inexpensively adapted to a
broad range of needs. Moreover, because the degree of reliability achieved
by the system depends on the number of processors used and on scheduling
strategies rather than on built-in aspects of the design, it can be varied

according to performance and cost requirements of the application.

The use of a formal design medium for purposes of specification,
validation, and reliability modeling can be expected to play an important
role in future designs of fault-tolerant computers. While a system might
make extensive use of redundancy, the system will not be reliable unless
the software or hardware mechanisms that manage the redundancy are correct.
Similarly, the formulation and use of elaborate reliability models is of
little value if it cannot be demonstrated that these models actually re-
flect the behavior of the system. We believe that SIFT constitutes a
major step in the direction of fault-tolerant systems whose correctness

and reliability can be verified.
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V TASK STRUCTURE, ALLOCATION AND SCHEDULING

A, Introduction

This section of the report describes. effective procedures for the
following major elements in the design of a fault-tolerant computer sys-
tem:

® Analysis of tasks to derive applicable flight phase

descriptions. :

® Determination of the numbers and sizes of the redundant
processor and memory units required for the reliable
execution of the specified tasks.

® Allocation of tasks to specific processor and memory
units to achieve some balance of processing and memory

loads.

® Specification of task scheduling and reconfiguration

procedures and symbologies in a concise, efficient
from suitable for implementation.

The analysis considers representative tasks for those aircraft func-
tions that have been previously described as candidates for control by
SIFT. While this set is more comprehensive than the set of tasks that
will be initially implemented in the prototype, it is important to devel-
op a design methodology for SIFT that will be applicable up to the desired
conceptual level of technological sophistication. This approach assures
an upward compatible design that will meet the requirements of a smaller
scale prototype while not constraining or invalidating future levels of

system expansion.

This section also considers schedule implementation factors such as
schedule storage, the impact of system dégradation, the practical impli-
cations of task criticality class, the change of schedules with flight
phase change, and approaches to deriving new task schedules dynamicélly

during flight.
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B. Flight Phase Analysis

The set of flight-related application tasks previously described in
the SRI report entitled "Design of a Fault Tolerant Airborne Digital
Computer'" [Ref. 1] was examined to establish configurations of active
tasks sufficient to support the major flight phases potentially encoun-~
tered in normal flight. The intent of this study was to determine the
variations in the task profiles of the various phases. It became neces=-
sary to distinguish between tasks that were actively being executed,
those that were serving a vital backup role (referred to as passive allo-
cation), and those tasks that performed secbndary roles by actively con=-
firming and augmenting the results of the primary tasks. In some
instances, certain tasks were not required at all for certain phases.
The derived flight-phases (Table V-1) constitute the major operational
modes for which SIFT must provide task allocation and scheduling among
the multiple processors and memories, as discussed in the following

portions of this section.

An anomaly state presenting a "Navigational Failure" is also speci-
fied in Table V-1 as an illustrative example. Although it is represented
as a phase, it is clearly a state that may need to be accommodated during
several of the described phases. The primary change is the shift of the
navigational support system from the VOR/DME and Multiple-DME to the Omega
or satellite equipment as primary support, with reliance on Air Data for
secondary support. Thus, the task schedules could be modified by simple
replacement of the preferred primary and backup navigation systems by

the appropriate secondary set of primary and backup systems.

c. Review of Task Characteristics for Flight Phase Assignment and
Processor-Memory Unit Allocation

The set of flight tasks that were to be considered for initial SIFT
implementation are listed in Tables 3 and 4 of the SRI report entitled
"Design of a Fault Tolerant Airborne Digital Computer" [Ref. 1]. Further
qualification and modification of the characteristics of these tasks have

been made to facilitate schedule development. Values of some properties
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Task
Code

Al
A2
A3
A4-6
A7
A8
B2
B3
B4
B5
B7
B8
B9
BlO
Ccl
Cc2
c3
D1
D2
D3
D4
D5

Symbols: P: Prime; S: Secondary; B:

Application

Table V-1

SYSTEM CONFIGURATION ANALYSIS

Flight Phase

Takeoff

Actitude Control
Flutter Control

Load Control
Autoland

Autopilot

Attitude Indicator
Inertial

VOR/DME & Multiple DME
OMEGA or Satellite
Air Data (Navigation)
Flight Data

Airspeed, Altitude
Graphic Display

Test Display
Collision Avoidance
Data Comm., A/C

Data Comm., Air/Ground (DABS)

AIDS

Instrument Monitor
System Monitor
Life Support

Engine Control

Backup; —:

Climb

Descent

P
P
5
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N/A
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P
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Approach
P
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Landing
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P
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P

o W n

w o o v

Lo T - T /T /- T 7 B - T - B - B ]



(ﬁg‘

needed to be assigned, and ranges of values required unique assignments
before schedule development could proceed. 1In addition, the local and
global executived have now been specified to a degree permitting values
with a sufficient level of confidence to be assigned to their description.
Likewise, the flight-phase-change tasks and the reconfiguration tasks can
be specified more accurately. A summary of the modifications and addi-
tions that have been made to the tables are given in Table V-Z.* The
resulting revised set of task modules-and their properties is shown in
Table V-3, These data can now be used to allocate task sets to processor-

memory units and to develop a suitable task scheduling algorithm.

D. Task Allocation and Schedule Generation

Procedures are outlined here for the allocation of the various tasks
to specific (redundant) processor and memory units, and for the organiza-

tion of the scheduling of those tasks.

The problems of allocating and scheduling these tasks are considered
in some detail. Assumptions regarding the characteristics of the tasks
include:

® All tasks pertinent to a flight phase are resident in

main memory during that phase.

© Reconfiguration can occur due to flight phase change,
processor-memory failure or pilot intervention,

® Software task replication in separate processor-memory
units is used to achieve fault-tolerance.

® Replicated tasks will be only loosely synchronized.

® The tasks operate on a real-time basis and have
stringent execution periodicity requirements.

*
The alphanumeric task designators are those used in Table V-1,
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Table V-2

ADJUSTMENTS AND MODIFICATIONS
TO THE INITIAL TASK SPECIFICATIONS

® Tasks A4, A5, and A6, the Autoland Tasks, were coalesced
into one task. '

Task Bl, the Supervisor Task, was merged with the Local
Executive, LE.

Task B4, DME/OMEGA, was combined with Task B3, VOR/DME,
since they would not run concurrently. Also, B4 was
assigned the same MIPS as B3.

Task B5, Air Data, was assigned an iteration rate per
second of 5 and a MIPS of 0.001.

The criticality class of Task C2, Data Comm. A/C, was
set to 1 assuming that the backup is under pilot direc-
tion.

Variable task criticality class assignments were fixed
by assuming the highest value.

Task D3, System Monitor, was assigned an iteration rate
per second of 5. Multiple or variable iteration rates
were chosen to have the highest wvalue.

Task LE was added to the table for the Local Executive
and is totally replicated. It has to run as frequently
as the most frequent module, that is, with an iteration
rate of 670 per second. The number of instructions per
iteration was determined to be 50,

The Global Executive, GE, was also added and was assigned
an iteration rate of five per second and 200 instructions
per iteration.

Infrequent requirements -

Instructions
. ola
per Iteration”

Reconfiguration - Global 100
Reconfiguration = Local 120
Flight phase change - Global 100
Flight phase change - Local 120
Program load 20 X number of words

* .
Criticality class = 1.
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Table V-3

TASK MODULE PROPERTIES FOR SCHEDULING ASSIGNMENTS

Iteration Period in Instructions Criticality
Task Rate/Sec. Sec. x103t Iteration MIPS Class Memory
Al 20 50 1150 0.023 1 2075
A2 250 4 276 0.069 1 92
* A3 240 4 (3) 58 0.014 3 * 60
* A4,5,6 160 6.25 (6) 344 0.055 1 * 1025
A7 5 200 200 0.001 4 250
* A8 30 33.3 (30) 2567 0.077 1* 1310
B2 25 40 1360 0.034 2 2250
* B3 5 200 (180 800 0.004 4 * 300
B4 5 200 800 0.004 4 505
B5 5 200 200 0.001 4 135
B6 0.2 5000 5000 0.001 4 315
B7 5 200 5600 0.028 4 550
* B8 16 62.5 (60) 562 0.009 4 * 430
* B9 8 125 (120) 4000 0.032 4 * 6250
B10O 10 100 1900 0.019 4 9340
* Cl 670 1.5 31 0.021 4 * 1200
* C2 5 200 1200 0.006 1 * 610
* C3 4 250 250 0.001 4 * 562
* D1 4 250 500 0.002 5 % 1300
* D2 5 200 2800 0.014 4 * 1900
* D3 5 200 200 0.001 1 % 1000
* D4 0.5 2000 2000 0.001 1% 1000
* D5 33 30 3606 0.119 1% 1500
* LE 670 1.5 50 0.034 1 *T 320
* GE 5 200 (180) 200 0.001 1% 1100
* REC-GE 100 1 *
* REC-LE 120 1 %T
* FPC-GE IRREGULAR 100 1*
* FPC-LE 120 1 *T
* PROGRAM LOAD 20% 1 *T
Abbreviations:

FPC - Flight phase change

LE, GE - Local and Global Executives
REC - Reconfiguration

T - Totally replicated

*
Most demanding phase, Autoland
The values in parentheses are period assignments somewhat shorter than the
desired requirements, but representing convenient multiples of the smallest
period (1.5 msec.), and of subsequent higher multiples, for schedule derivation.
Note that in no instance was the period changed by more than 30%.

$
Times the number of words
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Task allocation in the SIFT context embodies the selection and assign-
ment of tasks to one or more processor-memory units. The objectives of
allocation are:

® To achieve balanced task loading in terms of both

processing and memory requirements.

® To allow enough spare capacity to permit reconfig-
uration with one less memory-processor unit.

® To accomodate supplementary 'passive'" allocation of
critical tasks that demand processing within a time
frame that does not allow for reconfiguration.

e To permit either full task allocation or single flight-
phase task allocation with reconfiguration to achieve
flight-phase change.

Schedule generation has a similar set of objectives:
® A technique with an unequivocal set of task sequence

assignment rules,

® A schedule specification that can be efficiently
stored, applied, and changed.

e A derivation methodology that is flexible and can be
shown to achieve the required task execution periodicity.

® A representation that is easily interpreted and imple-
mented.
Prior to detailed allocation algorithm development, consideration should
be given to the way that task schedules will be implemented. Of particu-
lar interest here are such factors as:
® The resource penalty for loading all normal tasks

belonging to any flight phase schedules so that
no reconfiguration will be necessary.

® When a failure or set of failures occurs, the method
by which new schedules are derived and implemented.

e The extent to which tasks can be replaced by pilot
control so that schedules may be revised by simply
eliminating failed tasks.

® The form in which schedules are to be stored and/or the
way they will be generated on-line.
The resolution of these design factors is dependent on the task replica-
tion scheme, passive allocation techniques, failure state procedures,

and the total number of processor-memory units. If a generalized approach
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is taken to addressing these factors, the factors might be evaluated

from several alternative approaches to determine the impact of these
assumptions on either the required processor-memory resources, the sim-
plicity of schedule derivation and implementation, or the reconfiguration
method. For instance, if we triply replicate all tasks and, for all
flight phases simultaneously, allocate them over five processor-memory
units, would resources of any of these units be exceeded, and what is the
size memory units that is required? -Likewise, what is the resulting
accumulated distribution of processor and memory resources? These and

other similar questions are examined in this section.

The problems associated with reconfiguration resulting from system
failures are considered first and may determine the amount of spare
capacity that must be designed into the system to assure redistribution
of tasks on a failed processor-memory unit onto the other operational
units. A less critical task that is adequatly replicated initially may
not need to be reassigned. Very critical tasks either must be reassigned
to another processor-memory unit, must have adequate backup via another
task that is operational, or must have been passively allocated on some
other processor. Tasks that cannot tolerate missed iterations and that
belong to a high-criticality class should be passively allocated to guar-
antee immediate takeover of the critical task processing from a failed

unit.

One approach is to take all the tasks in any of the phases and dis-
tribute them across processors. However, this distribution would lead
to rather heavily loaded processors, and one or more additional processor
units would be required to support it. Such a distribution would, how-

ever, facilitate reconfiguration and flight phase change.

If there is only one flight phase per allocation or if, at least,
not all tasks are loaded into the system all of the time, then the
occurrence of a failure requires either accessing stored schedules or
having a method of automatically generating them. Such methods are con-
sidered in detail in the next section. Another approach is to depend
upon pilot intervention for certain noncritical support functions and to

more than triply replicate the critical tasks., While these approaches
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are all viable, the current documents need only demonstrate the feasi-

bility of at least one such allocation and scheduling scheme.

In order to estimate the minimum adequate number of processors to
forestall degradation bééause of a single processor or memory unit loss,
a simple approach might be taken. First, all tasks above minimum criti-
cality must be at least triply replicated to assure an adequate level of
confidence. Three replications are sufficient, but four give an addi-
tional ﬁargin that allows one processor-memory to fail while the module
continues to execute reliably without configuration. Assuming, however,
that reconfiguration is acceptable and necessary, a simple approach to
estimate the number of processors sufficient for the task is:

Let PT be the processing time to carry out one iteration of the
task,
T be the iteration period of the task,
MR be the memory requirement of the task,

then, the total processor requirement is

e )

all tasks

the total memory requirement is

M= MR .
all tasks

To illustrate application of possible allocation techniques, two
approaches are taken. Instead of focusing initially on the flight phases,
it was decided to attempt to schedule all tasks across all processors.
These processors are assumed to have 0.5 MIPS (millions of instructions

per second) capacity and have a 20-kiloword memory.

First, all tasks were assigned triple replication. Then the number

of processors was calculated:
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T

N
Number of _ 1.2 _ .
Processors ;;; MIPS X 3 X 0.5 T 1 =4.8-5 .

In this example, N = the number of tasks, MIPSj is the millions of instruc-
tions/second required for task 57 3 is for triple replication, the 0.5
factor is the machine MIPS, and the 1.2 factor provides a safety margin.
When the resulting number is rounded up to achieve an integer number of
processors, the appropriate number is found to be five. Thus, when these
tasks are allocated over five processors, assigning tasks of the highest
criticality class first, and allocating solely on the basis of processor
resource utilization (MIPS) and not on memory, the allocation found in
Table V-4 is obtained. Of particular note is the degree of MIPS balancing

achieved, The totals are consistent to within approximately #0,2%.%

The following steps define a more refined method for distributing
replicated tasks over a number of processor-memory units while assuring

that some balance of loads is achieved.

® Define the flight phase and tasks to be resident in
the memory units.

® Tabulate for each task: (1) the task MIPS and the
fractional processor utilization for the assumed
processor type, and (2) the task memory requirement
in thousands of words, and the fraction of total
memory required (for the size of memory unit to be
used).

® Determine the required replication per task based on
the criticality class and whether passive allocation
will be required.

® Accumulate the sum of the MIPS required for all tasks
of the worst-case flight mode to determine either:
(1) the total number of a prespecified processor type
that will be required; or (2) the processor speed re-
quired to provide one complete flight-mode processing
capability per processor (including a reasonable safety
margin). From an overall reliability viewpoint, it is
desirable to plan for at least five processors (as dis-
cussed in Chapter VII),

*
However, the balance may not always be this close.
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Table V-4

ALLOCATION OF ALL TASKS TRIPLY REPLICATED ACROSS FIVE PROCESSORS

Allocation Sequence:

® Take tasks with criticality class 1-2 and distribute them by maximum
MIPS; then

e Take tasks with criticality class 3-5 and distribute them by maximum
MIPS.

CC_ MIPS _ 1 2 3 4 5
1 0.119 D5 D5 D5
1 0.077 A8 A8 A8
1 0.069 A2 A2 A2
1 0.055 AL AL AL
2 0.034 B2 B2 B2
1 0.023 Al Al Al
1 0.006 c2 ' c2 c2
1 0.002 D3,4 D3,4 D3,4
4 0.032 B9 BY B9
4 0.028 B7 B7 B7
4 0.021 cl c1 cl
4 0.019 B10 B10  B1O
3 0.0l4 A3 A3 A3
4 0.014 D2 D2 D2
4  0.009 BS B8 B8
4 0.004 B3 B3 B3
4 0.004 B4 B4 B4
5  0.002 D1 Dl Dl
4 0.001 A7 A7 A7
4 0.001 B6 B6 B6
4  0.001 c3 c3 c3
4  0.001 B5 B5 B5
Total 0.322  0.322 0.321 0.322 0.321
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® Accumulate the sum of the memory requirements for all of
the allocated tasks of the worst-case flight mode (includ-
ing a reasonable safety margin) for each of the processors,
In addition, memory must be provided for the passive
allocation of those critical tasks for which, during
reconfiguration, no missed iterations can be allowed.

® Begin allocation by selecting the unallocated task
requiring the highest fraction of either processor MIPS
or memory storage, whichever is greater. In the event
of a tie, select the one with the highest combined
processor-memory total. For the given flight phase,
passive allocation should be based on the memory
requirement only. That is, the required memory storage
is considered for passive allocation, along with the
active modules. However, the execution of time for these
tasks is treated as zero for processor resource utlization.

® Using the determined allocation criteria (either memory
or processor), assign each selected task in turn to the
memory or processor, as appropriate, with the most avail-
able unassigned capacity. Assign tasks to the indicated
replication level, The only constraint is that a given
task may be assigned at most once to a given processor-
memory unit.

® Continue assigning tasks of lower load requirement until
all tasks have been assigned. Tasks that are totally
replicated, such as the Local Executive, can be assigned
at any point during the procedure. For the examples given
here, these tasks are assigned last.

® Check accumulated capacities on all units to verify that
none have been exceeded. Of any have been exceeded or if
either resource is badly misbalanced, a reallocation
should be made to achieve better balance. However, for
a given task, reallocation can take place only to units
that have not already been allocated that task.

A flowchart representing these basic steps is given in Figure V-1,

Next, applying this algorithm to the flight phase requiring the most
resources, we encounter more interesting conditions. An examination of
the flight phases in Table V-1 leads to the Landing Phase as the most
demanding of the phases. The critical data for allocation are shown in
Table V-5. The allocation based on these data is shown in Table V-6.

No preference was made for criticality class. Triple replication was
assumed, Also, the five processors used in the previous example were
used here. This is to allow for passive allocation as well as to allow

modules from other phases to be present to facilitate rapid phase change.
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Processing Requirement
for Task j

Memory Requirement
for Task j

Processing Load Already
Allocated to Module i
Memory Load Already
Allocated to Module i

FIGURE V-1

¢

INITIALIZE

FIND MAXIMUM

Pjm; =P, m

!

FIND MAXIMUM
p.m

y

FIND MINIMUM
P M,

ALLOCATE TASK J
TO MODULE i

REMOVE TASK j
FROM LIST

¢

No

Exit

No
Algorithm 2

ALLOCATION ALGORITHM
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Table V=5

TABLE OF AUTOMATED FLIGHT PHASE TASKS AND THE
CHARACTERISTICS USED TO DISTRIBUTE THEM OVER PROCESSOR-MEMORIES

Fraction Fraction
of 0.5 MIPS of 20K
Task MIPS Processor Memory (K) Memory
A3 0.012 0.024 0.06 0.003
A4 0.055 0.110 1.02 0.051
A8 0.077 0.154 1.31 0.065
B3 0.004 0.008 0.30 0.015
B8 0.009 0.018 0.43 0.021
B9 0.032 0.064 6.25 0.312
cl 0.021 0.042 1.20 0.060
c2 0.006 0.012 0.61 0.030
C3 0.001 0.002 0.56 0.028
Dl 0.002 0.004 1.30 0.065
D2 0.014 0.028 1.90 0.095
D3 0.001 0.002 1.00 0.050
D4 0.001 0.002 1.00 0.050
D5 0.119 0.238 1.50 0.075
GE 0.001 0.002 1.10 0.055
LE (T)* 0.034 0.068 0.32 0.016

ol

“T = Replicated totally
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Table V-6

ALLOCATION EXAMPLES--DISTRIBUTED ASSIGNMENT OF
AUTOLAND PHASE TASKS OVER FIVE PROCESSOR~MEMORY UNITS

Accumulated Task MIPS Accumulated Task Memory (K)
% per Processor per Memory Unit
Task M/P 1 2 3 4 5 1 2 3 4 5
B9 M 0.032 0.032 0.032 6,25 6.25 6.25
D5 P 0.151 0.119 0,119 7.75 1.50 1.50
A8 P 0.109 0.109 0.196 7.56 7.56 2.81
Ab P 0.164 0.164 0.174 8.58 8.58 2.52
D2 M 0.165 0.210 0.188 9.65 4.71 4,42
D1 M 0.166 0.212 0.190 9.88 6.01 5.72
cl M 0.185 0.233 0.211 9.78 7.21 6.92
GE M 0.166 0.234 0,212 10.75 8.31 8.02
D3 M 0.186 0.235 0.213 10.78 9.31 9.02
D4 M 0.167 0.236 0,214 10.88 10.31 10.02
c2 M 0.172 0.242 0.220 11.36 10.92 10.63
c3 M 0.187 0.168 0,221 11.34  11.44 11.19
A3 P 0.199 0,180 0.184 11,40 11.50 11.42
B8 M 0.208 0.251 0,230 11.83 11.35 11.62
B3 M 0.184 0.188 0.255 11.80 11,72 11.65
LE M 0.209 0.185 0.189 0.256 0.231 12.15 12,12 12,04 11.97 11,94

*
M - Allocation based on fraction of memory requiring largest capacity
P -~ Allocation based on fraction of processor requiring largest capacity

Notes: 1. Autoland requires the greatest processing.
2. Memory assumed ~-- 20 kilowords
3. Processor assumed -- 0,5 MIPS.



In this case, the accumulated MIPS and memory are reported in each
column. The results indicate that the distribution is not well equalized
for the processor (about *167% deviation) while the memory distribution

is closely balanced (to aboﬁt +1%) .

Thus, viable allocation schemes have been demonstrated that are

easily implemented and satisfy all stated allocation objectives.

E. Schedule Derivation

Now that some flexible allocation techniques have been described,
the problem of schedule derivation can be addressed. Properties that

are basic to scheduling of tasks in SIFT include:

® Replicated tasks executing on different processor
units need not be in lock-step synchronization, but
are only loosely synchronized.

® Tasks may be preempted, but such a procedure can
make program proving more difficult.

e Fixed sets of tasks represent flight phases and are
executed with a given periodicity.

¢ The only mandatory description of a given schedule
execution is one of flight change or reconfiguration.

In view of these conditions, several assumptions can be made that some-

what simplify the approach to scheduling.

® Tasks are assumed to be assigned to schedules as single
units that cannot be preempted. The only exceptions occur
when tasks execute for a period of time that equals or
exceeds the shortest task period (equal to the period of
the Local Executive). These tasks do require preemption
and will be considered more closely.

e Tasks are executed according to a fixed task sequence in
which each task is allocated one or several time blocks.
Except for the clock routine and global executive flight
failure or phase change processing, no task is interrupt-
driven or initiated outside of the fixed sequence.

e The schedule is based on the maximum execution time of
each of the member task modules (with provision for a
reasonable safety margin).

® The schedule maintains a totally reproducible ordering of
tasks that assures all tasks of the requisite periodicity.
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Furthermore, to accomplish the objectives laid out at the beginning of
this section, a simple, compact method of representing the schedule must

be available.

F. Schedule Representation and Notation

A convenient ﬁotation is needed that allows representation of a
task schedule in a concise, easily derived, and readily interpreted form.
One such approach is the adoption of a notation resembling that of reg-
ular expressions. The notation and interpretation of this formalism has

been modified and expanded to accommodate the SIFT scheduling requirements.

The following notational conventions have thus far been adopted:

Symbol Interpretation
n *
() or () The parentheses enclose a sequence of tasks or sets

thereof,T separated by commas, that are to be exe-
cuted in sequence. The "n'' superscript indicates
that the event sequence defined within the expression
is to be repeated n times and then terminated. The
asterisk superscript means that the expression is to
be repeated from left to right until externally termi-
nated. Note that the asterisk may not be used more
than once in a given expression and if used, must
qualify the outermost parentheses. Each task is
allocated a time slot equal to the maximum time
required for normal execution (extended to provide

a safety margin).

[ 1t The square brackets enclose tasks, or expressions
containing sets of tasks, separated by commas. Only
one of these elements is to be selected for scheduler
processing each time this expression is encountered.
Items are selected sequentially from left to right in
turn as the expression is encountered, such that for
n-items, one task for each of these n-items will have
been executed after n-iteratioms through this expres-
sion. Again, cycling wraps around to the first

TClearly the Task Dispatcher in the Local Executive must run following

each task execution to refer to the schedule in effect and to determine
the next task to be executed. Likewise, the clock routine must be run.
We assume that these small, fixed-length blocks of instruction can be
treated as though they were part of each task rather than being explic-
itly included as separate tasks. This approach sacrifices nothing
technically but greatly simplifies the representation.
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element. The superscript indicates that this ex-
pression is to be repeated i-times at that point
in the schedule.

A integer The A indicates an idle or unallocated processor time
block where the integer is the available time in
microseconds. This may be used to execute irregular
tasks or tasks that are so infrequent or require so
much processor time that they must be preempted a
number of times to allow more-frequent tasks to run.

[ 1. Subscripts indicate the periodicity in milliseconds
J of a given item in a given scheduling expression.
These are used for convenience and need not be
present.
Examples of the application of such a notation are shown in Figure V-2,
Also shown in this figure are alternative link-connected diagrams and

the long forms of these expressions.

Basically, the convenience of the modified regular-expression for-
malism is that it greatly facilitates the derivation of a schedule, as
well as its storage and execution, while the graphical representation

aids in the comprehension of a completed schedule,

G. Sample Schedule Derivation

Using the techniques discussed in the previous section, a sample
schedule is now developed using the tasks in the Landing Flight Phase.
This phase received attention since it demands more system resources
than do other operational phases. The data required for scheduling are
the task periodicity and the task module execution time. The step-by-
step development of the sample task schedule is shown in Figure V-3,

and the corresponding alternative representation is given in Figure V-4.
The procedure used for deriving such a schedule is:

Let N = the number of tasks,
For the jth task, (j =1, . . . N), let

pj the periodicity (in milliseconds)

e,
]

the execution time (in microseconds)
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The flowchart given in Figure V-5 describes the procedure for deriving

the schedule expression.

SCHEDULE ALTERNATE

EXPRESSION REPRESENTATION INTERPRETATION

ABC)" ABCABC,A ...

(A,BAR AB AAB A

A, [1B,A)ch” AB, AACABA, ...

PB—w
'&>> D—=w =2 =D=0 > 0O =—o—>
O

FIGURE V-2 SCHEDULE REPRESENTATION EXAMPLES

In representing the schedules, we can use a convenient shorthand
notation in which we define clusters of tasks according to the scheme
illustrated in Figure V-4, The total storage required to represent a
schedule can be greatly reduced, as can be seen by comparing the cluster
representation of Figure V-4 with the longhand expression illustrated in

Figure V-3.

69



ASSIGNED EXECUTJON

TasksT PERIODICITY TIME EXPRESSION
{(MILLISEC) (MSEC) o S B
c1 15 62 €1.A1438)] ¢
LE 1.5 100 (c1.LE.A1338)] ¢
A3 3.0 116 (C1.LE,A3.A1218,C1,LE A1338);
A4 6.0 688 (C1,LE,A3.[(A4,A528),A 121816,01,LE,A1338)§
88 60.0 1124 (C1.LE A3,[{(a4.A528),A1218]% (A4, As528),

(88.A94)] sol €1 LEA 1338)

GE 180.0 400 (C1,LE.A3,[[[(44,A528).A1218)? [(a4,A528),
88.A941)12,[[1A4.A528),A12181%,[(A4,GE, A 128).
(88.A94)) 1g0) 016 C1.LE.A1338)5

WHICH CAN BE SIMPLIFIED TO:

(C1.LE.A3, (1A4,1A528%% (GE A 128)]) 5. [A 121877,
(88.494)%) 1501..C1.LE A1338)3

A8 300 5134 (THIS SET OF TASKS WILL REQUIRE PREEMPTION,
AND THE TASKS ARE LOGGED IN A SEPARATE
EXPRESSION IN ORDER OF INCREASING PERIOD
SI1ZE )

B9 120.0 8000

B3 180.0 1600 (A8.,89,83.4)

T These tasks are sliocated in the order of decreasing iteration rates, except for those tasks for which the
execution time equaled or excesdad the period for the most frequently executed tasks. Thess tasks require
preemption and are assigned to an expression separate from that for the main schedule.

iAnumod processing rate of 0.5 MIPS

FIGURE V-3 SAMPLE SCHEDULE DERIVATION FOR THE LANDING FLIGHT PHASE
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A1338

NOTE: Clusters may be defined in increasingly greater detail:

X = [v,2] vV = (GE,A128)
Y o= (A4W) z = [A121827 U]
W = [A52829v] U = (B8, Aga)3

FIGURE V-4 ALTERNATE SCHEDULE REPRESENTATION

There are two procedures that need further discussion. The first
involves the reason behind choosing successive multiplicity factors
rather than factors based on the '"lowest common denominator." It is
indeed true that the latter approach would lead to an acceptable sched-
ule. However, the intention has been to derive a schedule description
that was concise and simple. With this in mind, examining the initial
stages of schedule development, one writes a simple expression with a
period as big as the shortest of the tasks. One then assigns portions

of the remaining time block to successive tasks. 1In the cited example
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INITIALIZE

\

ORDER TASKS BY P;
FROM SHORTEST TO
LONGEST

\

WITHIN P;, ORDER
FROM SHORTEST TO
LONGEST ej. SET k = j

i

ROUND P, , ; DOWN TO
NEAREST MULTIPLE
OF Py

SET k TO k ~ 1

FORM AN EXPRESSION
FOR THE SHORTEST
PERIOD:

PyPo ... Ar)

No

SET Tp = Py x 10° Usec
THEN, AT = Tp - Z; g

Number of tasks:
Tasks:

Period of task:
Execution time:

Subsets of task:

N
i=12,...N
Pi {msec}

ej {Usec)

s = number of tasks j,
j+ 1 ... having the
same period (Pj)

FIGURE V-5 SCHEDULE DERIVATION FLOWCHART
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sPLIT AT
INTO 2
BRANCHES

No

Yes
1
STORE AT, AS
LAST ELEMENT:
PiPis 1. - - Piago1
AT - .ll

DOUBLE THE PERIOD BY
REPEATING ALL
ELEMENTS (Py Py, . ..
ATpipy .. AT

AT oy = AT - Z o,
s

4

Code:

INSERT TASKS:
AT -PPi s .- - 2.1
Pj +5 18T ey
- ]
1 1
i=its
GET 1ST AT > ¢
" No
STORE TASK AT
END OF LIST FOR DONE
PREEMPTIVE ALL j?
ALLOCATION
Yes
GO TO NEXT AT pj =
{MAY BE BAD EVEN MULT. OF
ROUNDING EXPRESSION
SELECTION)
CREATE NEW FORKED
CYCLE, SET
M = Pi/Pexpresion
SET OE + {[P.Py], ... [P, ATE]) = OLD EXPRESSION
AND AT = AT FOUND ABOVE, THEN OE BECOMES
HOEM - 1 ((PLPy [, ... [PhPATE - P

FIGURE V-5 SCHEDULE DERIVATION FLOWCHART (Continued)
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Abort:
tnadequate

Schedule Time
Available

PERIODS
FOUND

3.1

?

SET e; preempt =

e - KAT
NEXT SHORTEST PERIOD
WITH UNASSIGNED AT

short

FIND

FIGURE V-5

-1 Yes

COLLECT SIMILAR
EXPRESSIONS FOR
SIMPLIFICATION

1

COLLECT BLOCKS
OF ATs AS POSSIBLE

REWRITE EXPRESSION
AND DEVELOP ALTERNATE
DIAGRAM

¢

APPEND PREEMPTED
MODULES AT END
OF EXPRESSION

¢

FIND SHORTEST PERIOD
WITH UNASSIGNED AT,
STORE AS P, .., SET j = 1

 J

P.
SET K = _LEreempt
Pshort
CALC: ﬂhshurt

KATshn:m

€ preempt

AT ew = KATshort -

€ preempt

n

DONE
WITH EXEMPT?

BUMP
=i+

Schedule Complete

SCHEDULE DERIVATION FLOWCHART (Conciuded)
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the total expression had a periodicity of twice the smallest period. We
then partition the available time blocks (the As) typically into two
subexpressions, only one of which is executed each time the expression
is processed. These subexpressions will typically have their own A

time blocks as elements. Note that the period of these elements is a
multiple of the period of its parent expression. Thus as each task is
added to the expression, a decision must be made as to which A time
block should be partitioned to accommodate the task. If it is possible
to take advantage of the expression having the largest period already
assigned, by using the A time block remaining within that expression,
then the embedded expression hierarchy is greatly simplified by not
proliferating many new disjoint subexpressions with new periodicities.
In addition, this choice of the 4 time block leads to more efficient use
of available A time blocks, leaving larger time blocks unfragmented and

whole.

The second procedure deals with the use of remaining time blocks
to satisfy the needs of task requiring preemption. It is assumed that
each of these tasks is run to completion before another is started. Here
large contiguous time blocks that are maintained intact and belong to
the shorter periods make the preemption task analysis much more straight-
forward. This allows use of very regular time intervals to verify that
the period needs can be satisfied for those preempted tasks in-the worst
case of all tasks requiring processing simultaneously. For example, in
the sample schedule, if all three preemptive type tasks came due for
execution at the same time, there are 8 time blocks of 1338 usec avail-
able every 3 millisec. This means that by 30 millisec (the period of
the most frequent task), there are 13,380 pusec available. Since all
three tasks require a total execution time of 14,734 usec, if we used no
other 4 time blocks in the expression, A8 and B9 would have been executed,
and B3 could be started when A8 came due for execution again. If we
then examine the longest consecutive sequence of tasks that could occur
before a A time block came available, it could be Cl, LE, A3, B8, Ci,
LE, which consumes a time block of 1564 psec. Then in the worst case,

if this sequence occurred at the time the three preempted tasks needed
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execution, a lead time in scheduling their execution ahead of their
required periodicity to assure no scheduling problem in this instance
can be calculated. It is desired to execute A8 prior to the onset of

this '"mo break" situation. Then it should be scheduled at:

Max Time 4 + Exec Time A8 T 6.7 millisec = 23% of period

N

Hence, if the period of this task is decreased by 237% for scheduling
purposes, then the period all three tasks should be satisfied in this
worst~case situation. A similar analysis can be carried out on the other
preempted tasks. Additional consideration of criticality class and

missed iterations may weaken this requirement.

H. Conclusion

In summary, then, methods for determining the required number of
processor memory units has been described and allocation of tasks can
be readily performed. Furthermore, a schedule derivation method has
been presented that could be performed on-line. However, all normal
flight schedules would be best stored in a regular expression and
invoked as required. This is because the derivation algorithm would
require more execution time and data access than would the retrieval
of stored schedules. While critical tasks will be passively allocated,
there will be instances where it may be necessary to derive a new
schedule. A method has been described that could be readily imple-
mented., If tasks will revert to pilot control, then they need only
be deactivated during reconfiguration. This enhances the criticality

of the display screens to the system.

As to schedule storage, the regular expression formalism can
clearly be mapped into a compact storable stack of tasks with appro-
priate delimiters and flags. This would lead to a way to store the

schedules both efficient and useful.

A simpler, more visual schedule representation has also been
derived that allows for ready comprehension of the task execution as

a function of time and the periodicity of isolated task sequences.
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Lastly, the schedule derivation is such that preemption is required
for only a subset of the tasks, namely those with exceptionally long
execution times that encroach upon the time periods of the more fre-
quent tasks, and the period of these preempted tasks is verified. This

concludes a derivation of a suitable schedule representation for SIFT.
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VI HARDWARE DESIGN

1. Introduction

The purpose of the bus interconnection network in the SIFT
computer is to provide commhnication between each procéssor (main or I/0)
and all memory units, except possibly the single memory unit already
connected directly to that processor by a high-bandwidth link. This
communication could be established with a separate connection between all
processor—-memory pairs. However, since only a few of the total number of
possible communication paths would ever be in use at the same time, a
multilevel interconnection network, similar to those employed in telephone
systems, should be considered in the hope of achieving a net saving in
equipment. A multilevel realization may turn out to have some desirable
fault-tolerance features as well, A two-level arrangement having four to

six intermediate busses was proposed in the original SIFT design concept.

In this section, some alternative designs for the interconnec-
tion network are explored. Comparisons are made between a single-level
network of direct connections (no busses), a two-level network (single
set of busses), and a three-level network (a cascade having two separate
sets of busses). Bit-serial, byte-serial, and all-parallel data transfer
modes are evaluated. The principal cost measures used for these compari-

sons of the several cases are:

g or G = number of equivalent NAND gates, a measure of
hardware complexity.

t or T = number of terminals.

d or D = number of clock cycles of delay for a full memory

access.

Lower-case letters apply to a single module or unit, and upper-case
letters to the grand totals for the entire network. Other important but

less quantitative criteria are:
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e The degree to which the final network can be conve-
niently modularized into MSI or LSI semiconductor chips,
either custom designed or commercially available.

® The complexity of calculations needed to generate
the routing codes for the two- and three-level net-
works.

® Algorithms required for checking and diagnosis of the
interconnection network to achieve the desired degree
of fault tolerance.

Typically about half of the processors will be I/0 microproces-
sors, rather than main processors, and their memory units will be corre-
spondingly smaller. They may not need the full number of address and
data-word bits, and communication paths will probably not be required
between each microprocessor and the other microprocessor memories. How-
ever, the savings in time and equipment resulting from these simplifica-
tions are not expected to be great and have therefore been neglected at

the present stage of the design.

The main results of this analysis are expressed in Figures

VI-7 and VI-8, which are described in detail in the following section.

2. Design Alternatives

Figure VI-1 shows the interconnection network within its imme-
diate context in the SIFT computer. Its overall function is to provide
bilateral communication paths between a set of p processors and a set of
p memory units. Requests normally originate with a processor, which
injects onto the forward connection the number of the memory unit (M)
with which it wishes to communicate, bus routing information (B) as
appropriate, and the address (A) within the memory. The return comnnec-
tion carries a data word (W) from memory, or else a single acknowledg-

ment digit.
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The following list gives the principal independent parameters

and their expected ranges:

Parameter Minimum Typical Maximum
p = number of 9 12 18
processors =

number of memories

b = number of 3 4 6
simultaneous paths

needed (= number of

busses for 2-level

case)

ny, = number of bits 16 24 32
in data word

n, = number of bits 16 20 24
in memory address

The number of bits needed for memory selection and for bus selection can

be derived from p and b, respectively, assuming a convenient coding.
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Three possible interconnection schemes are shown in Figure VI-2;
switching unit S in this figure is assumed to be capable of making one-
to-one connections between its left-hand terminals and its right-hand
terminals in all (or almost all) ways--in the fashion of a crossbar, for
example. The quantity o, designates the total number of simple switches
that would be required if each path through every switching unit were
provided by a separate switch. (The subscript £ designates the number of
levels in the network.) In Figure VI-2(a), for example, we have
01 = p(p - 1). (Recall that a network connection from processor k to
memory k is not needed.) The two-level arrangement in Figure VI-2(b)
reflects the assumption that no more than b comnnections are ever needed
at the same time. The three-level network of Figure VI-2(c), to be

described in detail later, also has the flexibility to provide as few as

b BUSSES

¢ }—0
c _—O
c—O
p Cl—O (P
¢ F—o
C_}—O
b) 0y =2bp
C 3 ° . . .
S: S1 :q i: 82 :ﬂ q: 83 :S
*— s s —e

. S . P e s -_E . s .
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p
= + =
(c) 0Oy pa (2 2

FIGURE VI-2 POSSIBLE INTERCONNECTION SCHEMES
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b < p paths, at a saving in circuit complexity. Other schemes having
more levels are also possible, but these three alternatives will be seen

to be the most competitive for present purposes.

The set-up of the paths in the interconnection netwprk must be
executed in a sequence of steps. First, a processor initiates a request
in the form (B, M, A), where B consists of 0, 1, or 2 bus numbers, depend-
ing on the number of levels; M is the memory number; and A is the address
within that memory (job number and local address). This request is sent
to the first receptor--either a memory unit [Figure VI-2(a)] or a bus
[Figures VI-2(b) and VI-2(c)]. Each output controller C of each receptor
continuously scans all request lines incident upon it whenever it is not
busy holding a connection. When the scanning is successful, the receptor
enters the busy state and closes the connections for the forward transfer
of the address and next bus (if any) and for the reverse transfer of data.
At the next level, the same action is repeated by the succeeding receptor.
At the final level (1, 2, or 3), the address A is handled by the memory

unit itself.

Actual transfer of data (and later release of established paths)
occurs somewhat differently, depending upon the mode of bit communication
through the network. For parallel transfer, the memory address A arrives
at the memory unit coincident with the data request. The return of the
data word W automatically signals completion of the operation. The re-
quest is then removed by the processor, all gates along the path are
opened, and each controller is released from the busy state and resumes
scanning. In the case of serial transfer, receipt of a request at the

memory unit triggers the return of an acknowledgment digit to the source

processor, This processor then spews forth its stream of address digits,
on completion of which the memory unit returns its stream of data-word
digits. Release of the path then follows as in the parallel case. Trans-
fer to and from I/0 processors takes place in an identical but possibly
abbreviated manner, since communication may be needed in only one rather

than both directions.
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3. Parallel Transfer

It should be clear from this description that each controller
in each receptor (memory unit or bus) requires two parts, a scanmer and
a switch., The manner in which these two parts function together is shown
in block diagram form in Figure VI-3 and as a logical circuit in Figure

VI-4, for the single-level case and parallel mode of transfer.

In the functioning of each scanner (Figure VI-4), a (p - 1)-
stage unary counter cycles continuously as long as no request is received
on one of its memory select lines M. The first such request that is
encountered stops the counter, and the counter state m and busy signal

are passed on to the switch.

Each switch is a simple two-way multiplexor for connecting one
of the p - 1 processors to the corresponding output lines. Thus it has
(p - 1) » (na + nw) left-hand terminals, which connect to the processors,
and n, + n. right-hand terminals, which connect to the memory proper.
The gate realization is straightforward. The complex of lines at the
left side of Figure VI-4 corresponds to the nearly complete crossing of
connections within S in Figure VI-2(a). WNote that the total of p(p - 1)
M-lines ties directly to the scanners, p - 1 of them to each scanner.

The other lines are paralleled to or from the controllers.

a. One- and Two-Level Networks

The cost measures for a single controller may now be

written down directly for the single-level case. For the scanner we have

Bee = 12(p - 1)+ (p~-1)+2+6=13p - 5
equivalent gates
tSC = 2p terminals (excluding clocks and power)
.= 1, = p - 1 clocks;
scmin scmax

and for the switch, letting n = n, + n s

= t

gy, — NP gates

w - (n + 1)p terminals
=0 .

swW
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We have assumed here a cost of 12 gates per stage for the counter, and
6 equivalent gates for the single-digit delay. (These costs are all

approximate, but-the final results do not depend critically upon them.)
.Wired-OR output gating is assumed for the data-word lines returning to

the processors.

_In the two-level case, shown in Figure VI-5, the bus and
memory receptors are the same as in the one-level case except for the
different numbers of inputs and outputs. In particular, the number of
scanneéd positions increases from p - 1 to p in the first level and reduces

from p - 1 to be in the second level. Thus,

Level 1
Boe = 13p + 8
o = 2p + 2 (b of these)
dSC =1 top
Level 2
= 13b + 8
sc _
ce = 2b + 2 (p og these)
=1 tob
sc

The number of hit lines to be switched increases from n to n + p in the
first level, in order to include the routing digits B, but remains at

the value n in the second level. Thus

Level 1
o = @ T P)p+ 1)
cw = (n+p+ L)Y+ 1 (b of these) .
d =0
sw
~Level 2
Bow = n(b f L
cw = (n+ 1)+ 1) (p of these) !
=0
sw
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Note that the circuit arrangements presented in Figures
VI-3 and VI-5 constitute a simplification over that described previously
in the Project 1406 Final Report, Specifically, memory-unit selection
is done here with a unary rather than a binary code. This choice presumes
that each processor requests each individual memory unit with a separate
line. The previous DATA REQUEST line can then be combined with this line.
If the memory units were selected with a more compact binary code having,
say, np digits, where np < p, then the number of bit lines to be switched
in the first level would be reduced slightly in the two-level case
[gsW = (n + np)p], but a more costly scanner must be used [gSC A 13p +
15 + np(p + 11)]. We conclude that the unary code leads to a more eco-

nomical design.

The grand totals may now be calculated. Summing over all

p memory-unit controllers, the single-level case yields

2
G, = p(13p - 5) + (n)p° = p>(n + 13) - 5p

1
2
T1 =2p  + (n + l)p2 = p2(n + 3)
Dlmin =3 Dlmax =ptl;

while the two-level case yields

G2 =b(13p + 8) + (n + p)b(p + 1) + p(13b + 8) + n(b + 1)p

= (n+ 8)(2bp + p +b) + bp(p + 11)
T, =b(2p + 2) + b(p + I)(n +p + 1) + p(2b + 2) +
p(n + 1)( + 1)
= (n+ 3)(2bp + p + b) + bp(p + 1)

=4, D =p+ b+ 2 .

2min 2max

Note that in both cases two clocks have been added to the total transfer
time for acceptance of the memory address and return of the data word.
G and T designate the total number of gates and terminals, respectively,
for all controllers, assuming one scanner module and one switch module

in each controller.
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b. The Three-Level Network”™

The general form of a three-level interconnection network
was shown in Figure VI-2(c) [Ref. 1l]. 1In the first‘level, the set of p
network inputs is handled s at a time, by qp/s controllers in p/s groups
of q each. Each has s inputs. The second level has qp/s controllers,
now in q groups of p/s each. Each has p/s inputs. The third level,
antisymmetrical to the first, consists of p controllers in p/s groups of
s each. Each has q inputs. An example for p = 9, s = q = 3, is given

in Figure VI-6.

17

I

FIGURE VI-6 EXAMPLE OF A THREE-LEVEL NETWORK

The parameters q and s should be chosen to optimize the

39 T3, and D3.

and s measure the richness of interconnectability, through the number b

design; we use here the cost parameters G The values of q

of simultaneous parallel paths provided, just as in the two-level network.

First, s must be selected in the range 2 < s < p/b for the network of

*The calculations reported earlier in Technical Memo No. 5 contained an
algebraic error, which affected the numerical results and the compari-
son of the three-level case with the others. This error has now been
corrected and the conclusions modified accordingly.
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Figure Vi-2(a) to be meaningful. To achieve b simultaneous paths we need

q=s if s <band q 2 b if s > b.

Telephone switching theory provides several directly appli-

cable definitions and results.

A rearrangeable network is one that provides all possible

one-to-one input-output connections, just as assumed for the switching
unit S itself; i.e., it is a permutation network. In general, however,
if some of these connections have already been established along certain
paths, it may be necessary to reroute them in order to set up additiomal
connections. A nonblocking network also has full permutation capability,
but in this case such rerouting is never necessary, regardless of the
order and the particular routing with which prior connections are set up.
These two classes of switching networks are useful theoretical models for
telephone switching, but are never used in practice because of their high
‘cost, and because only a small fraction of all telephones are ever in use

at the same time.

The parameters of the three-level network are constrained

as follows:

® For a nonblocking network, q =2 2s - 1,

For a rearrangeable network, q 2 s.

For most telephone networks, q << s.

For the bus interconnection network, it has been assumed
sufficient to have as few as b < p simultaneous connection paths. Con-
sequently, a rearrangeable or nonblocking capability is not needed;
however, such capability may be an asset if it can be achieved at a small
additional cost--a definite possibility, since the utilization ratio b/p

is larger here than in telephone practice.

Cost parameters for the scanners and switches in the indi-
vidual levels may now be readily calculated, just as was done in the two-

level case. For parallel data transfer:*

*Actuaily, a scanner having only two positions is somewhat less complex
than the above expressions indicate. The value g, . = 21 has been used
in this case instead of the value given by these formulas (gg. + 34).
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Summation of these individual contributions leads to com-

3 3

Consequently, it will be sufficient to deal with G

q and s in terms of p, b, and n.
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First, note from the contributing terms that the depen-
dences on q and s are strictly positive and inverse, respectively, so that
G, will be least when q is minimized and s is maximized, subject only to

3

the constraining inequalities cited above. Two cases must be distin-

guished., If p < bz, then we have ¢ s < p/b < b, Selection of the

largest possible value of s gives s = p/b, yielding
Gy = p%lp + (2n + 27)b1/b% + p(p + 3n + 24) +
pb(b + n + 15).

On the other hand, if p > b2, then we have q = b and b < s < p/b. The

maximum value of s is the same, yielding
G3 = b4 + (n + 16)b3 + 2(n+p + 8)b2 + 2(n + 13)pb +
p(n + 8).

The corresponding values of D3 are

D3min =3
2p 2
b +b+ 2vwhenp £b
D =
3max 2
% + 2b + 2 when p > b
4, Bit-Serial Transfer

For serial implementation of the controller, the scanner has
the same costs, while the number of bit lines in the switch is reduced
from n to just 3: a single address line, an acknowledgment line, and a
data-word line. However, the time required for actual transfer is now

increased by n. Thus,

gSW - 3P
sSwW - 4P
=n
sSwW

For all p memory units in the single-level case, then
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G 3p2 + p(13p - 5) = 16p2 - 5p

1
T1 = 2p2 + 4p2 = 6p2
Dlmin =q + 3, Dlmax =n+p+1

For the two-level case, assuming parallel transmission of mem-
ory selection lines through the bus controllers, but serial transfer of

all addresses and data,

G2 = b(13p + 8) + b(p + 1)(3 + p) + p(13b + 8) + p(b + 1)3
= b(p2 + 33p + 11) + 1ip
T2 =b(2p + 2) + b(p + 1)(&4 + p) + p(2b + 2) + p4(b + 1)
= b(p2 + 13p + 6) + 6p
D2min =n + 4, D2maX =n+p-+b=2 .

For the three-level case, taking s = p/b and either q = s or

q = b, as before:

G3 = p2(p + 33b)/b2 + p(p + 33) + bp(b + 18) for p < b2,
3 2
= b4 + 19b” = 2(p + 11)b + 32pb + 1llp for p > b2
3min n+ 5, D3maX b +b+n+ 2 for p b,

%+2b+n+2forp>b2

In these calculations, it is assumed that the circuitry required
for serialization and parallelization of addresses and data is integrated
into the processors and memories, respectively, at no appreciable change
in hardware cost within these units. If this assumption is not justified
for the technology chosen for processor and memory implementation, then

the effective value of Gl will increase over that calculated here.

5. Byte-Serial Transfer

Similar calculations apply if the transfer is effected using

r = rna/B\ + rnW/B1 successive B-bit bytes. Here, n~+ 2_+ 1 in G and T,

B
and the delay D increases by r over the value for the parallel mode.

The results for the single-level network become:
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(28 + 14)p° = 5p

G1 =
2
T, = (2B + &)p
lmin =r + 3, Dlmax =r+p+1

For the two-level network:

G

bp2 + (4B + 29)bp + (b + p)(2B + 9)

2
T, = bp’ + (48 + 9)bp + (b + p) (2B + 4)
omin = F + 4, Dyax ~ T+ P+ b+ 2

Finally, for the three-level network:

pz[p + (4B + 29)b]/b2 + p(p + 6B + 27) +

G =
3 2
pb(b + 2B + 16) for p < b",
4 3 2
=b + (2B + 17)b™ + 228 + p + 9)b” + 2(2B + 14)pb +
p(2B + 9) for p > b2
D3min =5+,
D3maX b +b+1r+ 2 for p b,
= % = 2b + r + 2 for p > b2
6. Comparative Analysis of Cost Measures

Figures VI-7(a), (b), and (c) display collectively the magni-
tude of G as a function of p, b, n, and £ over the ranges of interest of
these parameters, for the parallel mode of data transfer. These curves
are shown for the typical value of n = na + n_ = 44 bits (solid curves),
with values for the minimum and maximum (n = 32 and n = 56, respectively)
designated by dotted curves for the two-level case. (The others are very

similar.)

All of the formulas for T are so similar in form and relative
value to the corresponding ones for G that there is no need to display
their values separately. It may be safely concluded that the ranges of
optimality of design parameters based on the total number T of scanner
and switch terminals are very nearly the same as those based on the total
number G of gates.
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Reference to these figures leads to the following conclusions

for the parallel case.

For b = 4 and p large the two-level network is preferred by a
wide margin, but as b is increased or p decreased, both the one- and
three-level networks become more competitive in terms of gate cost. 1In
particular, the two-level network is superior to the three-level over the
entire range of parameter values of interest, and to the one-level network
as well over all of this range except when p = 2b; however, this extreme
combination of values is very unlikely to occur in the design of the SIFT
computer. The dependence of the minimum gate cost on all .three parameters
P, b, and n is linear and nearly proportional; in fact the approximate
formula

1 1
Gmin Q:Z(p + 2)(b + 2)(n + 8)

holds within 3% over the entire range of interest. This formula allows
one to estimate quickly the effect of a change in one of the design param-

eters on the circuit complexity.

Gate costs for the serial mode of transfer are shown in Figure
VI-A-8 for the case b = 4. Again, the superiority of the two-level imple-

mentation is apparent.

For the typical case: p =12, b =4, n = 44, and B = 4, Table
VI-1 lists maximum delay times Dzmax for 1, 2, and 3 levels and for all
three transfer modes. Dependence on p, n, and b is linear (where there
is any dependence at all), so the sensitivity of Dmax to changes in these

parameters can be readily estimated.

It is clear that, within each mode, the one- and three-level
networks are preferred from the standpoint of minimizing the maximum delay
time. However, the differences are only about 257 to 307 for the parallel
mode, are truly negligible for the bit-serial mode, and are in between for

the byte-serial mode.

It may be concluded that the operating speed of the intercon-
nection network is not critically dependent upon the number of levels in

the network, but (not surprisingly) depends rather critically upon whether
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the parallel, byte-serial, or bit-serial mode of transfer is employed.
In the parallel case there is a secondary dependence on the number p of

processors and number b of busses, as expressed in the equations

=p+b+2, D ~ 3b + 2

=pt 1l 3max

Dlmax 2max

7. Networks with More Than Three Levels

For sufficiently large p, the costs G£ and T£ can be reduced by
employing an interconnection network having more than three levels., This
can be done by holding q and s at small values (2, 3, or 4) and applying
recursively to each controller in the center level the one-to-three-level
transformation implied by Figures VI-2(a) and VI-2(c). For example, a
five-level network so generated from Figure VI-2(c) for p =8, s = q = 2
is illustrated in Figure VI-9. The relevant concern here is whether such

an alternative is preferred over the two-level case for the range of

values of p likely to be encountered in the SIFT interconnection network.
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FIGURE VI-9 EXAMPLE OF A FIVE-LEVEL NETWORK

The limiting situation q = s = 2 may be examined first. In this
case each of the S-units has two inputs and two outputs. The network is
the well-known Benes-Waksman arran [Ref. 2] shown in Figure VI-9 for
p = 8. This network is known to have complete permutation capability
(b = p), and for p = 2% has 2u - 1 levels and p(u - 1/2) S-units. (A
less symmetrical version has a slightly smaller number p(u - 1) + 1 of
S-units, but would probably require a more complex routing algorithm.)

Thus,

L =2u -1,
2p(2u - 1)

It

)

Each S-unit requires a pair of route-selection lines from the source pro-

cessor. At the ith-level, then,

Bawwi = 3n + 2(4 - i)]

Summing over all levels to get the grand total

£
Gl - 2: p(gsw + gsc)’
i=1
we obtain, taking Boe = 21 as before,
8y = 6.2u-1(2u - 1D(n + 2u + 5), where u = logz(p)
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For p = 16 we have u = 4 and £ = 7, giving G_ = 19,152 for n = 44 and

7
G, = 5736 for the serial mode. These values are much greater than the

mznimum values plotted in Figures VI-7 and VI~8. The corresponding costs
for p = 8 (Figure VI-9) are G5 = 6600 and 1680. These values are indi-
cated by small triangles in Figures VI-7 and VI-8. We may conclude that
the exclusive use of 2 X 2 S-units, using as many levels as needed, gives
rearrangeability but is more costly than all other solutions in the total
number of gates required. The delay Dmax would also increase in these
five- and seven-level realizations, of course.

Exclusive use of 3 X 3 S-units does not lead to a fully utilized

33 = 27. For p = 12, however, a

it

network having £ > 3 levels until p

hybrid five-level network for s = q 3 can be formed by ;ealizing each
of the three 4 X 4 S-units in the central level in Figure VI-2(c) in the
form of a three-level, six-element subnetwork of 2 X 2 S-units. The
final network, shown in Figure VI-10, has a total gate cost G = 10,860
for n = 44 and G5 = 2496 for the serial mode. Another five-level version
using 2 X 2 and 3 X 3 S-units in alternate levels has exactly the same
cost. These values are indicated by small circles in Figures VI-7 and
vI-8. Again, these costs are quite high and indicate the undesirability

of increasing the number of levels above three.

8. Modularization of the Bus Interconnection Network

The most complex scanner encountered in the previous discussions
had Boe 13p + 8 =2 242 gates and tSC = 2p + 2 = 39 terminals. Conse-
quently, there would be no difficulty in implementing the scanner as a
separate semiconductor module, should this be desired. The switch, on

the other hand, has a typical complexity given by

g (n +vy)(6+1)

sSwW

t

cw (n+ v+ 1)+ 1

where 6 varies from 0 to p and 8 from b or s to p. Except for the serial
mode (n = 3), then, the switch will need to be partitioned into two or
more parts to fit on any but the largest LSI modules. This may be con-

veniently done in the present instance by taking advantage of the
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FIGURE VI-10 FIVE-LEVEL NETWORK USING 2 X 2 AND 3 X 3 S-UNITS
IN ALTERNATE LEVELS

iterative form of the circuitry for the n parallel bits. Only the § gate
control lines (from the counter in the scanner) need be repeated in each
module, and all switch modules at the same level could be essentially the

same.

9. Comparison of Delay Times

The maximum delay times through the interconnection network for

different values of £ are shown in Table VI-1.

A particularly attractive design alternative for realization
would be one in which all controllers have the same number of inputs and
outputs, so that a common module might then be utilized in all three
levels. This would result in a minimum of wasted gates and terminals,
merely those corresponding to some of the routing selection digits in

levels past the first. With reference to Figure VI-2(c), this condition
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Table VI-1

SUMMARY OF MAXTMUM DELAY TIMES D,
(p =12, b =4, n =44, B=4)

L Parallel Byte~Serial Bit-~Serial
1 13 24 57
2 18 29 62
3 12 23 56

requires that s = q = p/s, so that p = q2 = b2, for the three-level net-

work. Hence,

G3 = 3b2[b2 + b(n + 14) + (n + 8)]

for the parallel case, and with n replaced by 3 for the serial case. Each

of the 3b2 modules now requires 83 = &g + B = 2b2 + b(n + 15) + (n + 8)

c
gates and t3 = tSC + tSw -p = b2 + b(n +5) + (n + 3) terminals. Results
for the only two cases of interest, corresponding to b = 3 and b = 4, are
tabulated in Table VI-2 for parallel transfer (n = 44) and for serial

transfer. The network for b = 3 is shown in Figure VI-6.

It is immediately apparent that the modules are pin-limited
rather than gate-limited for any modern semiconductor technology. A
serial controller might fit nicely on one semiconductor chip, but the
parallel version would still need to be bit-partitioned to make this
possible. Nevertheless, this possibility is an attractive one from the
standpoint of implementation, despite the nearly double total gate cost

(small squares in Figures VI-7 and VI-8).

If this high gate cost can be afforded, the single-level network

must be reconsidered, since all controllers are also identical in this

case:
2
G1 =p (n+ 13) = 5p
g, = p(n + 13) - 5
t1 = p(n + 3) .
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Table VI-2

SUMMARY OF COSTS FOR NETWORK REALIZATION
USING ALL-IDENTICAL MODULES

Three-Level Network One-Level Network
Parallel, n = 44 Bit-Serial Parallel, n = 44 Bit-Serial
No. of
Modules 03 %3 B3 5 B 05 e R N | S &8 &
27 6,345 247 203 1,917 83 39 4,572 508 423 1,251 139 54

48 14,400 320 259. 4,560 115 54 14.512 907 752 4,016 251 96



The total number of gates required is now somewhat less, but the number
of terminals (and gates) per module is substantially greater, so more

modules would be required.

All of these alternatives are compared numerically in Table

Vi-2.

10. Fault Tolerance Aspects

We follow the principle that recovery should be possible from
all single faults and from all double and most other multiple faults that
occur sufficiently far apart in time to allow a delay for the fault analy-
sis programs to identify the faulty unit and reconfigure the machine to

avoid its use.

This degree of fault tolerance can be achieved by defining and
isolating units in such a way as to limit the extent of a "single" fault.
Note that the extent of a fault is determined not only by how the domain
of improper operation propagates electrically, but also by the precision
with which the diagnostic routines are able to pinpoint the location of
the fault. For example, if these routines are so weak that a fault in A
can be narrowed down only to the combination (Pl,A), then the extent of
the fault must be considered to be (Pl,A) and not just (A). With refer-

ence to Figure VI-1ll, this ability to limit means that any one of the units

Pl, P2, P3, Al’ A2, or A3 may fail as a result of a single fault, but
P Aq
P2 Az
Ps Ay

FIGURE VI-11 ARRANGEMENT OF UNITS
TO ACHIEVE FAULT TOLERANCE
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that a fault in unit Al, for example, must never cause A, of A, to become

2 3

inoperative. Similarly, a fault in Pl must never incapacitate P2 or P3.

It is possible, though presumably less likely, for a fault to develop on
an actual connection path--from Pl to Al’ for instance-—that prevents
communication between these two units. Such a fault might occur without

blocking proper operation of P, in conjunction with A, and A3, or of A

1 2

in conjunction with Pl and P2. On the other hand, such a fault might

also disable either Pl or A1 or both. What we do insist, however, is

that if A1 must be declared faulty, then A2 and A3 will not be rendered

is declared faulty, P2 and P3

1

inoperative by the same fault, and if P1

are not affected.

In terms of the connection graph for the units of the entire
computer, this condition is equivalent to requiring that a single fault
may disable (a) any one branch, (b) any one node, (c¢) any one node with
an incident branch, or (d) any two connected nodes and their incident

branch.

Proper definition of what constitutes a separate unit with
respect to single faults requires only that replicated parallel subnet-
works be regarded as separate units, just as one would expect. Isolation
of these separate units must then proceed according to the principle that

parallel replicated units should never be comnected together in any way.

At the circuit level this condition of isolation requires that
merging lines must be electrically isolated at all points of fan-in and
fan-out of these replicated units. This might be implemented as simply
as employing resistors or diodes for input clamping and for interunit
connections at all points of fan-in and fan-out, in order to prevent
propagation of faults between units. However, optical channels or special
coupling circuits might be preferred, depending upon the nature of the

actual signals and the magnitudes of the fault probabilities.

To prevent the most likely types of double faults (those con-
fined to single units) from blocking fault-free units from use, an addi-

tional condition on the three-level interconnection network should be
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imposed: that all switch units should have a fan-in and fan-out of at

least three. Thus,

szs,q23,§z3 .

This requirement is satisfied by all of the realizations discussed pre-

viously.

Diagnostic routines should have no difficulty in pinpointing
the location of a fault to any switch, since this unit is purely combina-
tional and is interposed in data paths between a processor and a memory.
Thus all stuck—-at and short-circuit faults will appear as errors in
address or data transmission and can be readily detected and located.
Some of the switched lines carry routing and memory selection information,
but errors in this information will also show up as data errors whenever
the wrong memory is selected. To provide more positive protection against
memory selection errors, it may be desirable to assign replicated files

to different address blocks within the various memory units.

The scanner, while a simpler unit, operates sequentially and
must therefore be checked externally for both "do-nothing" faults and
faults that cause two otherwise nonsimultaneous actions to occur at the
same time. The former type of fault will presumably be detected by what-
ever overtime monitor is used for processor operations. The latter type
could cause small delays if a processor tries to communicate with a memory
unit through more than a single path through the interconnection network,
or it could cause data errors if a processor becomes connected to more
than a single memory unit. Both of these types of faults are readily
detected. However, the second may require some special attention in prep-
aration of the fault location routines so that the fault can be properly

localized.

11. Routing
When the number of levels in the interconnection network is two
or more, the allocation program in the system executive must contain a
routine for assigning busses or a route for each processor-to-memory access.

This routing information is forwarded to the processor as part of the
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execution program; in effect it becomes a portion of the memory-select and
address information. However, the assignment of access routes cannot be
made independent of one another. The scheduling of all of the various
tasks must be considered, in order to avoid conflicts and delays that
would otherwise result from two processors demanding overlapping routes.
Thus, route assignment must take into account both the scheduling of tasks
and the detailed interconnection possibilities within the interconnection

network.

For the two-level network, all bus controllers comnect sym-
metrically to all processors and al;o to all memories. Consequently,
potential routing conflicts can be circumvented by simply avoiding the
assignment of the same bus to two concurrent accesses. If the scheduling
constraints are not too severe, such an assignment might be handled by
simply rotating the assignment of busses to processors. This allocation
rule would be used until faults occur. As particular bus controllers,
processor-to-bus connections, and bus-to-memory connections are recognized
as potentially faulty and are taken from use, the assignment algorithm
would become more constrained. It could still operate on a '"mext avail-
able" basis, or by whatever algorithm is used for handling defective

processors and memories.

I1f the number of levels is three or more, the choices between
possible routes between processors and memories are no longer equally
preferable. As indicated previously, these interdependencies could be
completely avoided by employing a nonblocking interconnection network.
This form of network was seen above to be nearly twice as costly as a
rearrangeable network, however, and its use is probably not justified in
the present application. In view of the small number of connections
likely to be set up simultaneously, relative to the total number of pro-
cessors, routing conflicts would appear to be the exception rather than
the rule, even if a simple ''mext available path'" assignment algorithm
were used. Telephone theory provides sophisticated algorithms aimed at
minimizing the blocking probability for average low-level use of a switch-
ing system [Ref. 1]. 1In the present case, however, the number of proces-
sors is probably too small to make such elaborate schemes either necessary

or beneficial.
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It seems sufficient, therefore, for the allocation subroutine
to maintain and update a simple table, which contains for each processor
(row of the table) and memory unit (column) a list of the paths that have
been provided for in the design—-normally 3 or 4--and the status of each
such path: (a) fault-free and available at the moment, (b) fault-free
but busy, (c) potentially faulty, or (d) faulty. Except for the multiple
choice of routes, this table is the same in kind as must be maintained to

store the status of all units in the SIFT computer.

12, Conclusion

The foregoing analysis indicates the superiority of a two-level
interconnection network over alternatives employing only one level or
three or more levels for virtually all ranges of parameters likely to be
encountered in the SIFT computer and for all three transfer modes, parallel,
byte-serial, and bit-serial. 1In terms of the various cost measures, the
two-level network is less complex in total gate and terminal counts for
all parameter ranges of interest, in most cases by a wide margin. It has

the same (or a little greater) maximum access delay.

The bus interconnection network is readily decomposed into cir-
cuit modules, although some sacrifice in gate cost can be expected if all

of these modules are to be made alike.

These conclusions are not yet based upon a reliability analysis,
one that will take into account the various fault probabilities in each
type of unit and especially failures in interunit connections. The final
design choice for the interconnectio network will depend to some extent
upon this analysis, as well as upon the scheduling algorithms and diag-
nostic strategy adopted and upon system tradeoffs involving speed re-
quirements, relative hardware costs, and the parameters assumed specified:
p, b, and n.

The principal unanswered question at this stage of the design
concerns the matter of how the controller should be realized in hardware.

No two controllers occupying similar replicated positions in the network

should share the same chip. However, most of the controllers are
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terminal-limited rather than gate-limited, and this poses a problem for

good economy of realization.

B. Input/Qutput Subsystem

1. Introduction and Summary

The input/output subsystem of the SIFT computer is used to con-
nect to the aircraft environment. It clearly must satisfy the same kind
of reliability requirements as the remainder of the system. 1In addition,
it is highly constrained by the character of the devices within the air-
craft; for example, replicated air pressure sensors will not produce
identically the same readings, so the voting on this data will have to

allow for this fact.
The basic scheme for the input/output subsystem is:

® (Critical sensors are replicated, and the programs
that require the data read all the versions and
carry out a voting procedure as with any data that
are read.

® (Critical actuators must be replicated, each of
them containing sufficient local logic to be able
to read the several versions of the output data
that they require and carry out local voting,
possibly by mechanisms similar to those currently
employed with multiple actuators on aircraft, e.g.,
forced sum voting.

® Noncritical sensors and actuators are not replicated
but are connected to the system in the same way as
critical ones in order to preserve the same fault-
isolation rules on the input/output subsystem as are
used between processing modules.

® The central computing elements of the SIFT system
are isolated from noncritical sensors and actuators.

The manner by which the above objectives are achieved is de-
scribed below, starting with the design of a system for critical sensor
and actuator input/output, followed by a discussion of appropriate struc-
tures for noncritical units. The section concludes with considerations
of the aircraft bus structure and the question of problems of the position-
ing of the logic of sensors and actuators at the central computer or at

the units themselves.
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2. Critical Input/Qutput Units

Figure VI-12 shows how critical input and output units would
be connected to the central SIFT computer system. We assume that data
to and from the SIFT system flows on a multiple bus system, which is con-
nected to the main bus system of SIFT via logic that is realized by a

specially programmed microprocessor (marked as P in Figure.VI-12).

SIFT BUSSES

INPUT/OUTPUT

_BUSSES\

P -

MICROPROCESSOR~BASED
INPUT/OUTPUT CONTROLLER

\AAA

—

FIGURE VI-12 INPUT/OUTPUT FOR CRITICAL SENSORS AND ACTUATORS
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Each microprocessor operates in the same manner as the main
processors of SIFT, except that the tasks that are to be performed are
much smaller and the executive that resides in them is a reduced version
of the LE/GE combination in the central processors. The reductions that
are made are:

® No global executive is present in the microprocessors,

as the functions normally performed by it are either

not necessary or are carried out by the GE of the
central processors.

® The LE contains only the voter, scheduling, and dis-
patching functions, together with sufficient of the
global/local interface to enable it to determine its
schedules by reading the central GE tables.

In all other respects the I/0 processors operate according to
the same general rules as the central processors. This includes voting
on multiple input to achieve error detection and correction, reconfigu-
ration by change of scheduling tables, and the restriction that a pro-
cessor may only read data from other processors and may not write into

the memory of other processors.

Figure VI-12 shows the logical structure but does not indicate
the physical placement of the I/O processors. It is anticipated that some
or all of the I/0 processors could be placed close to the sensors and
actuators that must be controlled. Such considerations depend on the
economics and reliability predictions for the various bus system tech-

nologies.

3. Noncritical Input Units

In a SIFT system that is carrying out both critical and non-
critical tasks, it is necessary to maintain a separation between the tasks
because the noncritical tasks may not receive as much validation and ver-
ification as the critical tasks and thus may corrupt them. A method of
protection, whereby a program cannot affect the memory outside that al-
located to it, prevents programs for the noncritical tasks from inter-
fering with the critical ones (see Subsection VI-C-4). The same degree

of protection against the possibility of errors in the hardware is
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achieved by the use of a microprocessor-based unit that connects to the
main bus system and is used to read from the sensor and deposit the re-
sults of the read operation in its own memory. These results can then be
read by the main processors of SIFT. This scheme effectively isolates

potentially unreliable equipment from the other units of the system.

4. Noncritical Actuator Units

Noncritical actuators can be dealt with in the same manner as
noncritical sensors, by interposing a microprocessor-based unit between
the busses of SIFT and the units themselves. To some extent this may not
be necessary if the units themselves are so connected into the bus system
that they can only read from the SIFT module memories. This constraint
on the operation can be achieved in the bus control mechanism, as is the
case for the connection of SIFT modules themselves. The advantage of the
use of a microprocessor is that attention can be given to the design of
its interconnection and the same logic can be used many times, whereas if
the units are themselves connected, then it is necessary to ensure that
the logic and physical design preclude the propagation of errors or dam-
age. This validation would have to be carried out for each individual

type of unit that is connected to the system.

C. SIFT Memory System Design

1. Introduction and Summary

In this discussion of SIFT memory system design, we consider
the storage of programs and data for high-rate control and display func-
tions, which are served by the distributed memories of the basic SIFT
scheme, and also the low-rate, high-volume storage that may be required

in a practical, general-purpose aircraft computer.

At the present state of development of the SIFT architecture,
the following questions about memory are the most pertinent:
® How many levels of memory are needed to accommodate

the range of storage capacities and speeds in the
SIFT prototype?
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® What technologies are appropriate to the various
storage functions?

® What special logical functions may be needed within
memory modules to support SIFT processing and com-—
munication modes?

® What fault-tolerance capabilities are appropriate
to the various levels of the memory hierarchy?

® What are the basic performance requirements for SIFT
memories?

These questions are discussed in order.
The following conclusions are derived in the discussion:

® Two levels of memory are needed in an Air Transport
SIFT: a set of high-speed random access memories
(RAM) for program execution and a high-capacity block-
access byte-serial store. A large central RAM is not
needed.

® The following fault-tolerance schemes appear attractive:

~ Single-error—correction, double-error-~detection
codes exist for RAM data channels.

- Software reconfiguration of contiguous blocks of
words in RAM is provided.

— Either arithmetic sum checks or longitudinal parity
checks are made for a byte-serial store.

- Redundant address information (to some degree of
precision) may be usefully appended to each RAM
word.,

- The appropriate form of redundancy for the block
access memory needs further study. Dual redundancy
appears satisfactory.

— A section of read-only memory may be employed use-
fully in each processor memory.

- A reliable form of nonvolatile writable RAM would
be beneficial, but is not presently available.
Awareness of future developments is desirable.

- The feasibility of marginal checking for contem-
porary semiconductor memories should be investigated.
It is potentially of great value in SIFT,

— Memory design should allow for the possible use of
tagged architecture. Tagging of words appears to
have several beneficial uses, e.g., in protecting
data from erasure because of erroneous address
calculation.
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® The problem of unflexed fault tolerance circuits is
significant, but solutions are apparent, e.g., perma-
nently string data patterns in memories that can test
error-detection logic. '

2, Memory Hierarchy

The most pressing concern about the SIFT prototype memory hier-
archy is the need for a central fast memory. Our studies® have determined
that the high-rate aircraft control programs may be served adequately by
the memory modules associated with the distributed SIFT processors. It
also appears necessary to have capability for storing high-volume data
with relatively low requirements for access speed. Data of this type
include:

® Copies of all programs, to be used in an extreme

situation when normal reconfiguration fails.
® Infrequently used programs, e.g., for diagnosis.
® Sequences of recent input-output activity, to be
used for system recovery or off-line system analysis.
The volume and rate required for this class of data are now known precisely,
but it appears that (1) transfer of a block of data, with latency on the
order of a few milliseconds, is satisfactory (see Section V), and (2)
capacities on the order of 107 bits and data rates of 106 bits per second
are reasonable to demand. Such characteristics are provided by current

technologies in the form of block-organized shift registers.

These considerations indicate that the SIFT prototype should
provide for serial-mode, block-transfer storage as well as multiple,
fast, random-access storage units for the distributed processing of high-
rate programs. Given the disparity in speeds and sizes of the two memory
types, it is natural to consider the use of an intermediate level of
storage, such as a large-capacity random-access memory.

The following uses for such a memory are apparent:

(a) Direct program execution, one benefit of which would be

an economy in storage, since failures in a processor would

not require abandonment of memory, as in the present dis-
tributed processor design. A second benefit would be a

114



reduction in the overhead required for the memory mapping
that supports reconfiguration of storage under faults.

(b) Storage of rarely used programs, a benefit of which would
be a reduction in the required capacity of the distributed
processors for programs which, when needed, require rapid
access.

(¢) Storage of flight-critical programs for rapid loading of
distributed memories during fault recovery.

(d) Storage of future very large programs that exceed the
individual capacity of present distributed memories. A
benefit would be to simplify reconfiguration procedures,
since the distributed memories would be reserved for small
programs.

Of these points, only (a) requires special architectural pro-
visions, since the direct execution of programs from a central memory
requires a major increase in bus data rates and/or a redesign of the bus
concept. The major benefits appear to be economic, on the grounds that
in a central memory, failure of a processor does not cause a reduction
in memory; hence a lower amount of memory redundancy is needed. The
economic impact would appear to be small, because processor failure is
expected to contribute little to system failure rate compared to memory

itself.

Point (b), storage of rarely used programs, can be satisfied by
the block-organized storage level, provided that the store is capable of

loading a 1K program block in 12 ms [Ref. 3].

Point (c), storage for rapid loading of critical programs,
appears not to have significant benefit. All the critical programs sur-
veyed are small and can be transferred between a pair of distributed
memories with sufficient speed to meet recovery requirements. If, in the
future, critical programs are added that are so large as to prohibit
rapid transfer, satisfactory reconfiguration could be achieved by employ-
ing a higher order of replication than is currently expected for applica-

tion programs.

Point (d), storage of abnormally large programs, does not con-
stitute a compelling reason for distinguishing a separate level of memory.

It might require that some of the distributed memories be of larger than
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average size. This would tend to constrain the flexibility of reconfigu-

ration, but it does not seem to be a serious problem.

We conclude that an intermediate level of storage, in the form

of a large random access memory, is not justified.

It should be noted that the arguments given are based on the
particular computational needs of the air transport problem environment
and on currently feasible memory organizations. The appropriate memory
hierarchy for a SIFT computer used in different problem areas, e.g., time-
shared computing or communications processing, would have to be reexamined.
New memory developments might also have an impact. For example, an ex-—
tremely low-cost serial store might be a useful attachment to each dedi-

cated processor-memory.

3. Memory Technologies

The primary impact of memory technology on SIFT architecture is
felt in the following issues:
® The choice of magnetic core or semiconductor storage
for the processor memories.

® The feasibility of a block-access 107—bit secondary
store.

® The need for fixed or nonvolatile storage.

In the July 1974 study [Ref. 3] it was argued that semiconductor
memories are preferable to magnetic-core memories on the ground that (1)
they tend to use much fewer circuit connections and manual assembly opera-
tions, (2) the drive circuits operate at lower, hence less stressful power
levels, and (3) low-level sense signals are restricted to the interior of
the devices, hence are more immune to noise. We believe that these fac-
tors still apply, and our following discussions assume the use of semi-
conductor memories for the processor memories. We also observe that
magnetic~core memory technology continues to evolve appreciably. There-
fore the comparative value of the two memories should be reviewed period-

ically.
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Recent developments have established the feasibility of two
novel technologies for block-access stores: charge-coupled devices (CCD)
and magnetic bubble storage (MBS). Both are amenable to byte-serial
shift-register type structures and are well suited for block-structuring,
with block lengths of 104—105 bits. Data rates appear to favor CCD by a
factor of two to three. Contemporary CCD units have a maximum rate of
about 5 Mb/s, while MBS units have a maximum rate of about 2 Mb/s. CCD
appears to be capable of higher speed through design refinements, but

significant increases in MBS speeds may require a breakthrough in tech-

nology.

An important function of a block-store memory is to retain data
between flight periods. At such times, aircraft power may be off. It is
therefore important to consider the feasibility of means for preserving
data with power-off in the two schemes. MBS appears to have a significant
advantage in nonvolatility of data, in respect to both (1) power loss and
(2) interference due to strong envirommental signals such as lightning.
This advantage results from the use of static magnetic biasing fields
closely adjacent to the storage surface. The problem of power loss in
CCD (and other semiconductor memories) may be mitigated by the use of
small batteries, and the problem of interference may be solved by careful
shielding. The use of "holding" batteries is common in current semicon-~
ductor memories, but it is not yet fully accepted as a solution. Shield-
ing as a protection against lightning strikes also has proved generally
satisfactory for low-power digital circuits. Power loss remains an

inadequately studies problem.

Based on nonvolatility, MBS would appear to be the medium of
choice at this time, The issue, however, may be decided on economic
grounds., While the primary issue for the air transport application is
not cost but reliability, the two are closely connected, since high-volume

production has a strong effect on intrinsic device reliability.

With regard to economic factors, CCD has a strong current ad-
vantage over MBS, derived in part from the strength of the existing semi-

conductor industrial technology base. CCDs are themselves facing strong
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competition from ordinary random-access memory (RAM) technologies. Appar-
ently the somewhat higher intrinsic cost of RAMs (due to higher fabrica-
tion and testing complexity) may be outweighed by theilr presently much
higher production volumes and by the system advantages of their lower

latency times.

In summary, a reliable, low-cost, block-oriented mass store
appears feasible at this time. If the magnetic bubble technology proves
not to be economically viable, then special effort should be made to
assure the capability of semiconductor memories to withstand transient
interference and to have data maintained during power-off periods of

several days.

The problem of data-volatility also pertains in the distributed
RAMs used for program execution. The reason for concern is that a massive
power failure or noise impulse may erase critical programs or data and
require a time-consuming reloading of programs or recomputation of crit-

ical state data.
The most critical data, in order, are:

® The local executive program
® Any copy of the global executive program

® Flight-critical state information for high-iteration-
rate control programs

® Flight-critical state information for low-rate control
programs

® Non-flight-critical programs.

The following several candidate functional types of random-
access memory are considered. It is generally feasible to mix memory

types within a single memory unit.

The most nonvolatile memory is a read-only memory (ROM). For-
tunately, a ROM is entirely feasible for the local executive because the
same program appears in each memory, and it should not be subject to
change. The use of a ROM has the important benefit that it would permit

system initialization without the use of external memory units.
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The use of ROM for the global executive is more controversial,
because not every memory needs a copy of the global executive and because
the program may be more subject to change. The nonvolatility of a ROM
may be attractive enough for the purpose of rapid recovery after massive
transient errors to justify some extra copies of the global executive.

It should not be necessary to have a copy in each memory, merely enough
to cover the expected needs for spare copies. Furthermore, it may be
possible to partition the global executive program into ROM and RAM por-
tions to achieve some economy in the redundant copies; every memory would
then have a copy of the ROM. portion, but only as many RAM-portion copies

would be carried as are expected to be needed.

ROM technology is not appropriate for Items (c), (d) and (e).
For critical-state information, it would be attractive to be able to use
one of the various forms of writable nonvolatile semiconductor memory, a
function usually referred to as programmable read~only memory (PROM).
The so-called MNOS technology, for example, has the desirable character-
istic that information is retained without applied power. It has several
disadvantages, such as deterioration with extensive use and slow writing
speed, which seem to rule it out for the present application. Several
claims have been made recently in various trade journals about improved
PROM technologies for RAMs and CCDs. Such developments deserve continued

attention.

In summary, the use of ROM for a portion of the SIFT working
memories should be assumed. The use of PROM technology would be benefi-
cial if some reliable form appears that is compatible in timing with the

‘primary RAM devices.

4, Special Logical Functions

In this section we discuss the possible need for special logical
functions in memory units other than for fault tolerance. We consider

both the distributed RAM memories and the block-structured mass memory.

In SIFT, each processor handles a mix of tasks, some of which

are of high criticality while others may have no strong reliability

119



requirements. It is expected that the high-criticality programs will be
subjected to a variety of verification procedures (including formal proof)
to ensure their correctness. The tasks of low criticality may not be
verified to the same high dégree, and thus it is necessary to ensure that
these latter tasks cannot adversely effect the correct operation of the
high-criticality task through the presence of programming errors. A
powerful mechanism to guarantee the separation of tasks is the use of
"bounds" checking on memory references. This mechanism allows a task

program to write only into the area of memory that is allocated to it.

Various known address-—control mechanisms should be incorporated
in the processor. It may also be cost-effective to include some redun-
dancy within the memory. For example, a short data field may be attached
to each data word that can carry some identification to aid in program
protection. Such identification could be either a unique program label,
or perhaps, a label indicating the level of certification reached by a

given program.

Such appended data fields are known as tags. The extensive use
of tags has been advocated by several authors (Feustal), e.g., for secu-
rity enhancement and for indicating the "type" of a datum (integer, alpha-
numeric, etc.). It is employed in at least one line of commercial com-
puters. Decisions about tagging properly belong to processor design.

For the SIFT RAMs, the concept simply implies additional word length of
from three to ten bits. Logical operations on the tags would be accom-

plished within the processors.

The second class of memory function is the block-oriented bulk
memory. This memory is not intended for direct program execution, so it
need not be associated with a regular processor. Nevertheless, in order
to receive data for recording, it must actively request it. Some form
of processor is therefore needed to provide this function, as well as
such functions as block address interpretation and output. Only a frac-
tion of the logical capability of a standard SIFT processor would be

needed, but using one is probably the most cost-effective approach.
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5. Fault Tolerance

The basic SIFT concept assumes the use of modules of standard
design for both memories and processors. The primary mechanism for fault
tolerance is reconfiguration over modules, but the use of some fault-
tolerance mechanisms within modules is not excluded, and may, in fact,
be cost effective. This section discusses the use of fault tolerance
within SIFT memories. The major emphasis is on the primary distributed

memories.
The five relevant issues in memory fault tolerance are:

Diagnosis
Error detection
Error correction

Reconfiguration

The "unflexed fault tolerance circuit" problem,

These issues will be discussed in order.

a. Diagnosis

The need has been established for in-flight diagnosis in
addition to preflight diagnosis for the Air Transport SIFT. The archi-
tectural issues are (1) should diagnostic data have a special memory port,
or should it flow via the normal data part, and (2) are any special logi-
cal capabilities needed within the memory devices or subsystems to aid in

diagnosis?

With regard to the first of these, it is clear that addi-
tional ports would introduce sources of error whose control might be very
expensive in terms of added system fault-tolerance mechanisms and increased
complexity of reliability analysis. All efforts should be made to employ
the data paths and processor control functions used for actual computa-

tion.

The second issue is difficult to address in the absence of
particular memory designs. In general it is desirable to avoid special

mechanisms, both to reduce the number of fault sources, and to avoid
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special, low-volume production runs that might be required for special
features, but two functions may justify some added equipment: (1) marginal

testing, and (2) partitioning of memory to enhance fault location.

We deem marginal testing to be potentially a very valuable
facility, especially because it may help to uncover incipient faults, and
thus give time for reconfiguration before computing errors occur. The
actual benefit for contemporary memory systems needs to be ascertained
prior to the statement of engineering specifications. One item of con-
cern is that the control of such marginal states needs to be protected.
One one hand, the use of program control introduces new hardware and soft-
ware sources of error (in order to limit the damage due to such errors,
marginal checking should be controlled independently in each processor).
On the other hand, it would be an unreasonable burden on the flight crew
to have the control completely manual. It may be acceptable to use pro-
gram control together with a crew-visible indicator to indicate the appli-
cation of a marginal state. This would tend to protect against a stuck-on

. *
marginal state.

The use of internal logic to enhance fault location could
be beneficial if it were desired to use internal reconfiguration for fault
tolerance (e.g., by modifying memory address-mapping). Its benefit would
be to accelerate diagnosis by isolating sections of memory. RAMs have
very uniform structures, which are amenable to systematic testing. It is
therefore not clear that the amount of the acceleration of diagnosis
would justify the cost and fault-hazard of the added logic. Some further
investigation of this point would be justified. 1In any event, since
memory diagnosis is not feasible for recovery of high-criticality faults,

its acceleration is a relatively minor issue.

*The trade—offs discussed here also appear in the more general issue of
run—-time system diagnostics, since any diagnostic mode can introduce
some sources of vulnerability to mission-directed computation.
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b. Error Detection

Error detection in SIFT memories may have several benefits.
For example,
® As an adjunct to error correction, it can give
warning of an incipient memory-unit failure.

® It can strengthen the decision of a programmed

voting check; that is, if one version of an
input datum disagrees with the one (or more)
other versions, a memory-error indicator can
confirm the identification of the faulty data
source. If there is only one other version
(i.e., if the redundancy is "dual"), then the
faulty source may be identified without further
diagnosis., This would tend to justify increased
use of dual-mode redundancy.

Many effective techniques are known for error detection in
memories. Several important examples are: (1) generalized parity-check
codes for words of data, (2) special codes for numerical data, (3) arith-
metic sumchecks for blocks of data, and (4) address tags (for verifying

address-selection logic in RAMs).

Parity-check codes are very cost-effective for RAMs, and
are widely used. The use of up to ten percent additional number of bits

is probably justified.

The use of separate codes for numerical data is not justi-
fied. They are inefficient for memories, and ineffective for LSI-
realized processors, especially in a voting-and-whole processor-

reconfiguration scheme such as SIFT.

The use of arithmetic sum-checks for data blocks appears
attractive for a serial mass-memory, since it would tend to catch shift-
control faults (that would cause loss of duplication of characters). The

technique has no additional contribution over word-parity checks for RAMs.

The use of redundant address tags on words is attractive,
since certain faults in some RAM word-selection logic-circuits tend to
cause selection of single incorrect words (other faults may cause selec-

tion or partial selection of several words). Single-word selection errors
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would not be detected by parity checks. The cost of detection would de-
pend on the precision of the redundant address information. This could
range from one bit to the full address. The value of this technique
should be estimated in the context of particular memory system designs.
For example, the word selection logic may be such that most failures give

either non-selection or multiple-word selection.

c. Error Correction

The benefit of error correction for the data of SIFT memo-
ries is that it may be a very cost-effective way to prolong the useful
life of by-far the largest portion of SIFT hardware. It appears to be
unsurpassed in cost-effectiveness protection against one or perhaps two
faults per memory unit. Furthermore, it is usually inexpensive to obtain
error detection of one unit more than the amount of error correction.
Thus, given the programmed voting check of SIFT, the occurrence of two
errors in a single-error-correction, double-error-detection memory unit
would still allow indication of which version of a dual-redundant com-

putation is correct.

While the use of error detection alone is potentially very
effective in SIFT, as discussed previously, the added cost of single-error-

correction with double-error-detection appears to be highly justified.

The degree qf redundancy required for a block-access mass
memory will depend on technological factors that are presently unknown.
Considering the relatively low criticality of the data, dual redundancy
may be satisfactory. Since the memory will probably have a module real-
ization, it may be that dual redundancy might be effectively applied over
storage blocks within a memory, provided that the driving circuitry can

be protected.

d. Reconfiguration

The major value of memory reconfiguration is to deal with

multiple faults, since error-correction schemes using coding are almost
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always more cost-effective for one or two faults. Reconfiguration may
be applied at the level of a block of words, a bit-plane or a memory

device.

The least expensive form is block reconfiguration. 1In the
current SIFT design, software.memory mapping tables are employed to inter-
pret addresses for all interprocessor communication. These tables greatly
facilitate program relocation among processor-memory units. It is a
trivial step to assign values to the mapping tables so as to bypass any
contiguous block of words in a memory that has been determined to contain
faults. The major cost would seem to be the size of the program (and the
cost of its verification) needed to analyze the fault pattern and to

define the boundaries of the forbidden region.

Block reconfiguration is effective for faults in memory
cells and for some faults in word selection circuits, but it is not effec-
tive for faults that affect an entire bit circuit. Such faults are well
covered by error-correcting codes, for ome or two bit circuits per mem-
ory. If a larger number of bit-circuit faults must be tolerated, some
form of switching of logical bit—planes may be effective. Such switch-
ing is very expensive and fault-prone. Considering the numerous other
fault tolerant mechanisms available in SIFT, we deem it not to be a cost

effective measure.

A device-level reconfiguration scheme has been described
[Ref. 3] that is very cost-effective for large numbers of faults. In
order to employ this scheme some modifications to memory chip design are
needed, together with a rather powerful diagnosis and reconfiguration
program. The initial cost of the scheme appears to be prohibitive for
the present application. Its greatest value is for very long unattended

life.

e. The "Unflexed Fault Tolerance Circuit" Problem

The general "unflexed problem" is the problem of determin-
ing that a functional element is operable prior to its use in a real-time

computation. This problem is especially serious for fault-tolerance
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mechanisms, In a straightforward design, some failures of such a mecha-
nism will be observed only when the fault condition it is designed to
treat occurs. An apparent dilemma exists in that if a fault condition is
artificially simulated so as to test the mechanism, some action (such as
program reconfiguration) may be initiated that could harmfully degrade
performance; therefore, to avoid such degradation, the consequent activity
must be inhibited. Such inhibition, of course, may also be a source of
trouble, and a complete test must assure that the inhibition itself can

be terminated.

This problem applies to both hardware and software mecha-
nisms. In the case of memories, the controlled flexing of error detection
and correction circuits is clearly desirable. One attractive way to
achieve this would be to record permanently a set of erroneously encoded
words in an ROM section of each memory. Such words could be read by a
diagnostic program which would be designed to interpret correctly the
outputs of the error-detection or correction circuits. The problem of
correctly inhibiting undesired reconfiguration would be passed upward to

the executive program.

This scheme avoids the need for special circuitry to defeat
the normal data encoding circuits. Such defeating would be needed in

order to simulate a defective memory.

6. Performance Specifications

In this section we summarize the performance required for SIFT
memories. At this stage of SIFT development, the various requirements
have different degrees of certainty. The discussion references the
sources of the requirements and indicates the issues that must be examined

in order to achieve more precise values.

a. Distributed-Processor Memories

The following requirements pertain to the random-access

memories used locally to each SIFT processor:
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® Word length

Data field: 24 bits [Ref. 3]

Tag field: 4 to 8 bits
(length to be determined by analysis of higher-
level mechanisms for correction of faults in
memory addressing)

Error—-detection/correction field: 9 to 12 bits
(assume 30 bits for data and tag) (length to
be determined by the trade—off in cost and
reliability between memory and coding-decoding
logic)

® Maximum capacity: [64K-128K] words [Ref. 3]

Actual values will vary with the application, and
may be much less than the maximum. The expected
value required to cover the entire set of air
transport applications is [24K]. The maximum
amount assumed will determine the address size
required for processor design. The value of
maximum—-capacity stated is consistent with trends
in modern minicomputer technology and architec-
ture. It is very conservative with respect to
the full set of computations surveyed in Refer-
ence 3. It is conceivable that some new require-
ments may develop that greatly increase required
system memory-capacity, e.g., elaborate graphic
displays. The SIFT architecture can be expanded
(by at least a factor of three, and perhaps
higher) by the addition of new processor-memory
pairs, so as to meet a greatly increased require-~
ment.

Access modes: (1) whole word, read/write, random-

access (access to subfields at the memory inter-
face is an unnecessary feature and would greatly
complicate error-detection/correction); (2) whole
word, read-only, random-access (data are preset
at manufacture). Assembly should allow easy
change of ROM portion by maintenance personnel.
Total amount of the ROM portion is expected to
be less than 20% of the distributed-processor
memory . '

Special features

(1) Single error correction with double error
detection, using encoding and decoding
logic at the (word) data interface.

(2) Possible use of programmed marginal check-
ing of memory circuits.
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® Interfaces

(1) High bandwidth interface to the local
processor.

(2) The interface to the bus system must incor-
porate a means to protect the memory from
continuous accesses by a faulty bus. Sec-
tion VI-B describes such an interface which
is identical to the means used by a bus to
protect itself against repeated accesses by
a faulty processor.

b. Block-Access Memory

Requirements on the block-access memory are less certain
at this time than those on the random-access memories, because the re-
trieval functions are less critical. Also, some relevant architectural

issues remain to be settled, such as tolerance to transient interference.

The key characteristics are data rate, delay in accessing
the beginning of a data block, and capacity. The capacity of the memory
system will be determined by numerous critical and noncritical data
functions. A range of 106 to 108 bits appears likely. The data rate and
access delay will depend upon the critical functions. These appear to be
of two classes, i.e., temporary storage of input and output data, and
storage of duplicate copies of critical programs. A maximum recovery
time of 12 milliseconds is assumed. Separate block memories may be needed
for the two classes. The following estimates apply:

® Data rate: for temporary I/0: 10° bytes/sec

for program access: 0.5 X 100 bytes/sec.

(based on transfer of a block of 4K word,
30 bit/word, in 50 ms).

® Access delay for a random block: less than 1 ms.
® Special features:

(1) fault tolerance probably in the form of
dual redundancy, with independent control
of storage and retrieval, Possible use of
longitudinal error-detecting codes.
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D. Processors

The essential features that are required in a SIFT processor for
use in an advanced commercial transport are described in this section.
As the fault-tolerance of the complete system is achieved by software
aided by the overall system structure, there is little need for any
special fault-tolerance hardware in the processors themselves. Rather,
the requirements on the processor are confined to a small number of

critical features that enable the software to achieve the fault-tolerance.
The critical issues in the specification of the processors are:

® Interface to the bus system

® Interface to the memory

® Features to assist diagnosis in the processors
e Indirect and indexed addressing

® TInterrupt system

® Internal clock

® Memory access bounds checking.
We address these points in the order listed.

The interface to the bus system is the most important issue in the
processor specification. It is this interface that enables the SIFT
system to achieve fault isolation and damage isolation between individual
processor memory modules. The fault isolation is achieved by the fact
that the processors cannot write data onto other units, and the damage
isolation can be achieved by the use of appropriate circuit design
techniques such as the use of high impedance drive circuits. The inter-
face must be capable of transmitting a data-read request to the appro-
priate bus and of transferring the accessed data back to the requesting

processor. A data-read request contains the following elements:

® Bus designator (max 3 bits)
® Process designator (max 4 bits)
® Task designator (max 6 bits)

e Offset within task (max 14 bits).
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The above estimates for the number of bits assumes that the following
maxima are used in the SIFT specification: 8 busses, 16 processors, 64
tasks and 16K words within a task. It also assumes that a simple binary
code is used and that codes for error detection and correction are not
employed. The above control data must be communicated to the bus system.
The 27 maximum bits of this data can be achieved with the filling of a
register of two words 1ength.* This implies the existence of this special
register attached to the conventional output unit of the processor. The
use of such a special register can enable conventional processors to be
used in this application with only the requirement of being able to load

a pair of external registers, as will be possible with all commonly avail-
able processors. Following action by the bus system on the control data

a word will be transferred back to the processor., This word of data will
be placed in an external register that can be read by the processor in a

conventional manner.

The interface to the memory units would be the conventional inter-
face as typically supplied with a processor and no special requirements

arise in the case of the SIFT computer.

The use of special features to assist in the diagnosis of processors
and memories would lead to an opportunity for more powerful diagnosis
techniques. In the SIFT system we intend to base the diagnosis of equip-
ment on the behavioral characteristics of that equipment and thus we see
little need for special built-in test equipment (BITE) or its use in

built-in testing (BIT).

The reading of data in one computing module by another demands that
indirect addressing be available, because the location of a word in omne
memory unit is unknown to the reading unit. This implies that a table
of base addresses for data segments be kept in each memory and that the
access to a word in those memories would use indirect accessing to the

required word. The same comments apply also to the use of indexed access

*Assuming a word length of 16 bits as discussed below.
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to data. These remarks are also restrictions upon the specification of
memory units but are included here because the indirection and indexing

into memory is often carried out in the associated processor.

The provision of an interrupt system in the processor is required
for some of the fault tolerance techniques that are part .of the SIFT
design. Included in this are the interrupt for time-out when a task has
overrun the time allotted to it and the interrupt on the occurrence of a
clock tick. The latter occurs whenever a new task starts. No external
interrupts are envisioned for the SIFT system. An internal clock is re-
quired to provide for the above-mentioned clock ticks at the start of

each task frame.

An important feature of the processor is the need to provide for
checking of the address in each task calculation to ensure that data of
other tasks is not corrupted. This can be accomplished by the use of

array bounds checking as in conventional data processors.

Within the limits of the above, there are few requirements on the
processor beyond the speed requirement that the processor be capable of
operating at an instruction execution rate of approximately 0.5 MIPS.

This is a relatively modest requirement compared to modern minicomputers,
but is currently beyond that achievable by present—day LSI microcomputers,
although it is expected that by the mid-1980s this speed will be achiev-

able by such units.

E. Power Supply System

We are concerned in this section with reliability aspects of the
power supply system for SIFT. Two issues are important, protection
against damage propagation and maintaining adequate power supply to SIFT

in the event of individual power source failures.

The primary power sources used on modern civilian commercial aircraft
vary with each aircraft type. For an example, the DC-10 and the 747 both
use a three-phase 400 cycle alternator driven by each jet engine. The
DC-10 has three jet engines and three alternatoré while the 747 has four.

In both aircraft the power generated by the alternators is rectified,
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regulatéd, and fed to a common 28-volt bus, which in turn supplies current

to the 28-volt battery bank.

The alternators are used in a feedback system in which the regulators
monitor the input voltage (and current) and feedback a proportionate
amount to the alternator field thus controlling the alternator output volt-
age. Figure VI-13 depicts such a single alternator system. Figure VI-14
shows the power sources on a DC-10 aircraft with three primary and two
auxiliary alternators. One of these auxiliary units is driven by a tur-
bine for use when the aircraft is on the ground and the main engines are
at idle or when engines are being used to taxi the aircraft, as the vary-
ing engine speeds used during taxi operation would cause unacceptable
voltage fluctuations. The second auxiliary unit on this aircraft is
driven by the flow from an external air scoop when the aircraft is in
flight. It is strictly for emergency purposes in event of failure of the

main alternators.

The 747 aircraft system is similar but has four main engine driven
alternators and two auxiliary gas turbine driven altermators. Each of
these aircraft primary power systems is a good example of parallel redun-
dancy. Under emergency operation, any one alternator feeding the battery
bank could supply adequate charging current for a long enough period for

safe completion of the flight.

Primary power systems of this nature provide a parallel redundant
system in which the main alternators are all on line and contributing to
the common load. Up to the limit of the storage capacity of the battery
bank, the excess power is being stored. The regulators are typically
adjusted so that each alternator is contributing an approximately equal‘
amount to the common load. When the battery pack is fully charged, the

regulators furnish less field and the alternator is allowed to idle.

Failure of an alternator can be caused either by failure of the
driving engine or by a failure of the alternator itself. In either case
the removal of that alternator from the system is affected by the series
combination of (1) the rectifier diode and (2) by the regulator before

manual (switching) intervention is affected. The remaining alternators
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automatically pick up the extra load which was being carried by the

failed unit in addition to their own previous load.

Failure of any single diode by open circuit condition will not nec-
essarily cause a system failure. The ripple will increase and the recti-
fier output voltage will drop, resulting in increaséd field excitation
requirement to the alternator. The unit failures are normally detected
and corrected by the flight engineer. A shorted diode would be more
serious and could cause a failure in the unit either by burn out of the
phase winding or damage to the regulator circuit. (A simple fuse could
be inserted in each phase leg to ensure an open circuit instead of a short

and thus prevent component damage.)

One suggested protection device is an overvoltage protection device,
Figure VI-15. This device would be located at the load input. The
circuit has the ability of fast action in the event that a regulator
failure resulted in an overvoltage from the associated alternator. In
that case the device would turn on the SCR thus shooting out the fuse
and removing the offending system. The remaining alternators would be
unaffected except that they would be required to pick up the additiomnal
load.

The availability of the five generating systems plus the main battery
bank provide a parallel redundant system which has proved capable of
failure-free operation for the time period